首页> 外文期刊>The Cryosphere Discussions >Archival processes of the water stable isotope signal in East Antarctic ice cores
【24h】

Archival processes of the water stable isotope signal in East Antarctic ice cores

机译:南极东部冰芯水稳定同位素信号的归档过程

获取原文
       

摘要

The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome?C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation–condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
机译:最古老的冰芯记录来自南极东部高原。水同位素是重建冰盖上和蒸发源上过去气候条件的关键代理。气候重建的准确性取决于对影响水蒸气,降水和雪同位素组成的所有过程的了解。分馏过程已广为人知,可以集成到基于轨迹的瑞利蒸馏和启用同位素的气候模型中。但是,仍然缺少对可能在沉积后改变雪同位素组成的过程的定量理解。在低蓄积地点,例如在南极东部发现的那些地点,这些受限制不充分的过程很可能发挥重要作用,并限制了冰芯同位素组成的可解释性。通过结合来自南极东部深冰中心Dome?C的蒸气,降水,地表雪和地下积雪中同位素组成的观察结果,我们发现与最初的降水。特别是在夏季,蒸汽和雪之间的水分子交换是由昼间的升华-凝结循环驱动的。总体而言,我们观察到降水事件之间地表雪同位素组成的变化。使用来自南极的五个堆积点不同堆积速率的雪坑的高分辨率水同位素组成图,我们确定了不能归因于降水季节变化的常见模式。降水,地表雪和掩埋的雪同位素组成的这些差异提供了沉积后过程影响低聚积地区冰芯记录的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号