...
首页> 外文期刊>NPG Asia Materials >Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues
【24h】

Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues

机译:还原的氧化石墨烯官能化的纳米纤维丝素蛋白基质,用于工程化可兴奋组织

获取原文

摘要

Tissue engineering has provided an alternative strategy for the regeneration of functional tissues for drug screening and disease intervention. The central challenge in the development of mature and functional excitable tissues is to design and construct advanced conductive biomaterials that can guide cells to form electrically interconnected networks. The objective of this study was to develop reduced graphene oxide modified silk nanofibrous biomaterials with controllable surface deposition on the nanoscale. A vacuum filtration system was applied to attain reduced graphene oxide nanolayer deposition. The results demonstrate that with this method, a uniform and compact reduced graphene oxide nanolayer was formed, and the conductivity and nanofibrous morphology of the materials was well controlled. The composite nanofibrous scaffolds were applied for the engineering of cardiac tissues and demonstrated a great ability to promote tissue formation and functions, including the expression of cardiac-specific proteins, the formation of sarcomeric structures and gap junctions, and tissue contraction. External electrical stimulation further enhanced the maturation level of cardiac tissues cultured on these conductive scaffolds. All these results demonstrated the great potential of reduced graphene oxide functionalized silk biomaterials fabricated using our method for recapitulating electrical microenvironments for the regeneration of functional excitable tissues.
机译:组织工程学提供了用于药物筛选和疾病干预的功能组织再生的替代策略。成熟和功能性兴奋性组织发展的主要挑战是设计和构建可以指导细胞形成电互连网络的高级导电生物材料。这项研究的目的是开发具有可控的纳米级表面沉积的氧化石墨烯改性的丝纳米纤维生物材料。应用真空过滤系统以获得减少的氧化石墨烯纳米层沉积。结果表明,采用该方法可以形成均匀致密的还原氧化石墨烯纳米层,并且可以很好地控制材料的电导率和纳米纤维的形貌。该复合纳米纤维支架被用于心脏组织的工程设计,并显示出极大的促进组织形成和功能的能力,包括心脏特异性蛋白的表达,肌节结构和间隙连接的形成以及组织收缩。外部电刺激进一步增强了在这些导电支架上培养的心脏组织的成熟水平。所有这些结果表明,使用我们的方法概括电微环境以再生功能性可兴奋组织的方法制成的氧化石墨烯功能化的丝生物材料具有很大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号