...
首页> 外文期刊>PLoS Genetics >Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants
【24h】

Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants

机译:斜体拟南芥DNA甲基转移酶突变体减数分裂频率的表观遗传重塑

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 ( met1 ) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1 , coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1 , suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1 . Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a , and we demonstrate that it undergoes increased recombination activity in met1 . We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes. Author Summary The majority of eukaryotes reproduce via a specialized cell division called meiosis, which generates gametes with half the number of chromosomes. During meiosis, homologous chromosomes pair and undergo a process of reciprocal exchange, called crossing-over (CO), which generates new combinations of genetic variation. The relative chance of a CO occurring is variable along the chromosome, for example COs are suppressed in the centromeric regions that attach to the spindle during chromosome segregation. These patterns correlate with domains of epigenetic organization along chromosomes, including methylation of the DNA and histones. DNA methylation occurs most densely in the centromeric regions of Arabidopsis thaliana chromosomes, where it is required for transcriptional suppression of repeated sequences. We demonstrate that mutants that lose DNA methylation ( met1 ) show epigenetic remodeling of crossover frequencies, with increases in the centromeric regions and compensatory changes in the chromosome arms, though the total number of crossovers remains the same. As crossover numbers and distributions are subject to homeostatic mechanisms, we propose that these drive crossover remodeling in met1 in response to epigenetic change in the centromeric regions. Together these data demonstrate how domains of epigenetic organization are important for shaping patterns of crossover frequency along eukaryotic chromosomes.
机译:减数分裂是一种专门的真核细胞分裂,产生有性生殖所需的单倍体配子。在减数分裂期间,同源染色体配对并进行相互的遗传交换,称为交叉(CO)。减数分裂CO频率沿着染色体的物理长度变化并且由包括表观遗传组织,例如DNA和组蛋白的甲基化的分级机制确定。在这里,我们调查DNA甲基化在确定拟南芥染色体上CO频率模式中的作用。在拟南芥中,着丝粒周围的区域是重复的,DNA被甲基化密集,并且被RNA聚合酶II转录和CO频率抑制。 DNA次甲基化的甲基转移酶1(met1)突变体显示着丝粒中的重复序列的转录重新激活,我们证明了这与CO频率的广泛重塑有关。我们观察到met1中着丝粒近端CO的升高,与着丝粒周围的减少和远端的增加同时发生。重要的是,野生型和met1之间的CO事件总数相似,表明干扰和体内平衡在CO重塑中的作用。为了更好地了解重组分布,我们在野生型中生成了靠近3号染色体端粒的CO频率图,并证明了met1中重组拓扑的升高。使用花粉分型策略,我们已经确定了一个无基因间的无核小体的CO热点3a,并且我们证明了它在met1中经历了增加的重组活性。我们假设3a活性的调节是由高着丝粒COs驱动的CO重塑引起的。这些数据表明区域表观遗传组织如何沿真核染色体模式重组频率。作者总结大多数真核生物通过称为减数分裂的特殊细胞分裂繁殖,该分裂产生配子,其配子数目为染色体的一半。在减数分裂过程中,同源染色体配对并经历相互交换的过程,称为交叉(CO),产生新的遗传变异组合。 CO沿着染色体发生的相对机会是可变的,例如,在染色体分离过程中,附着在纺锤体上的着丝粒区域中的CO被抑制。这些模式与沿染色体的表观遗传组织结构域相关,包括DNA和组蛋白的甲基化。 DNA甲基化最密集地发生在拟南芥染色体的着丝粒区域,这是重复序列转录抑制所必需的。我们证明,失去DNA甲基化(met1)的突变体显示交叉频率的表观遗传重塑,着丝粒区域的增加和染色体臂的补偿性变化,尽管交叉的总数保持不变。由于分频器的数目和分布受稳态机制的影响,我们建议这些响应于着丝粒区域中的表观遗传变化而在met1中驱动分频器重塑。这些数据共同证明了表观遗传组织的域对于沿着真核染色体形成交叉频率模式至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号