首页> 外文期刊>PLoS Genetics >RecQ helicases in the malaria parasite Plasmodium falciparum affect genome stability, gene expression patterns and DNA replication dynamics
【24h】

RecQ helicases in the malaria parasite Plasmodium falciparum affect genome stability, gene expression patterns and DNA replication dynamics

机译:疟原虫恶性疟原虫中的RecQ解旋酶影响基因组稳定性,基因表达模式和DNA复制动力学

获取原文
           

摘要

The malaria parasite Plasmodium falciparum has evolved an unusual genome structure. The majority of the genome is relatively stable, with mutation rates similar to most eukaryotic species. However, some regions are very unstable with high recombination rates, driving the generation of new immune evasion-associated var genes. The molecular factors controlling the inconsistent stability of this genome are not known. Here we studied the roles of the two putative RecQ helicases in P . falciparum , Pf BLM and Pf WRN. When Pf WRN was knocked down, recombination rates increased four-fold, generating chromosomal abnormalities, a high rate of chimeric var genes and many microindels, particularly in known ‘fragile sites’. This is the first identification of a gene involved in suppressing recombination and maintaining genome stability in Plasmodium . By contrast, no change in mutation rate appeared when the second RecQ helicase, Pf BLM, was mutated. At the transcriptional level, however, both helicases evidently modulate the transcription of large cohorts of genes, with several hundred genes—including a large proportion of var s—showing deregulated expression in each RecQ mutant. Aberrant processing of stalled replication forks is a possible mechanism underlying elevated mutation rates and this was assessed by measuring DNA replication dynamics in the RecQ mutant lines. Replication forks moved slowly and stalled at elevated rates in both mutants, confirming that RecQ helicases are required for efficient DNA replication. Overall, this work identifies the Plasmodium RecQ helicases as major players in DNA replication, antigenic diversification and genome stability in the most lethal human malaria parasite, with important implications for genome evolution in this pathogen. Author summary Human malaria is caused by Plasmodium parasites, with most of the mortality (almost half a million deaths each year) being caused by one species, Plasmodium falciparum . This parasite has an unusual genome: it is exceptionally biased towards A and T nucleotides rather than G and C, and it contains specific areas rich in hypervariable virulence-associated genes which evolve very rapidly to produce new variants. This evolution is probably vital for the parasite to evade the human immune system and maintain chronic infections, but how it is controlled at a molecular level remains unknown. We have identified a helicase in the parasite with a huge influence on genome stability and the rate of genome evolution. It appears to function by unwinding various unusual DNA structures, and if this fails then the genome becomes unstable. In addition, the transcription of many genes whose DNA tends to form secondary structures is affected, and DNA replication is impeded. If this helicase was expressed variably in different parasite strains infecting humans, it could influence the parasites’ ability to grow and replicate efficiently, and also, crucially, its ability to evolve and thus evade the human immune system.
机译:疟原虫恶性疟原虫已经进化出一种不寻常的基因组结构。大多数基因组相对稳定,突变率与大多数真核生物相似。但是,某些区域的重组率很高,非常不稳定,从而推动了新的与免疫逃避相关的var基因的产生。控制该基因组不稳定稳定性的分子因素尚不清楚。在这里,我们研究了两个推定的RecQ解旋酶在P中的作用。恶性肿瘤,Pf BLM和Pf WRN。敲除Pf WRN后,重组率增加了四倍,从而产生了染色体异常,嵌合var基因的高发生率和许多微片段,特别是在已知的“易碎位点”中。这是首次鉴定抑制疟原虫重组和维持基因组稳定性的基因。相反,当第二个RecQ解旋酶Pf BLM突变时,突变率没有变化。然而,在转录水平上,两种解旋酶均能调节大批基因的转录,数百个基因(包括很大比例的var s)在每个RecQ突变体中均显示出失控的表达。停滞的复制叉的异常处理是潜在的突变率升高的可能机制,这是通过测量RecQ突变株系中的DNA复制动力学来评估的。在这两个突变体中,复制叉的移动缓慢并停滞不前,这证实了RecQ解旋酶是有效的DNA复制所必需的。总体而言,这项工作确定了疟原虫RecQ解旋酶是最致命的人类疟疾寄生虫中DNA复制,抗原多样化和基因组稳定性的主要参与者,这对该病原体的基因组进化具有重要意义。作者摘要人的疟疾是由疟原虫引起的,大多数死亡(每年将近百万死)是由一种恶性疟原虫引起的。这种寄生虫有一个不寻常的基因组:它偏向于A和T核苷酸而不是G和C,并且它包含特定的区域,该区域富含与高毒力相关的基因,这些基因非常迅速地进化以产生新的变异体。这种进化对于寄生虫逃避人类免疫系统并维持慢性感染至关重要,但是如何在分子水平上控制它仍然未知。我们已经确定了该寄生虫中的解旋酶,其对基因组稳定性和基因组进化速率具有巨大影响。它似乎可以通过解开各种异常的DNA结构来发挥功能,如果失败,基​​因组就会变得不稳定。另外,许多DNA倾向于形成二级结构的基因的转录受到影响,DNA复制受到阻碍。如果这种解旋酶在感染人类的​​不同寄生虫菌株中表达不同,可能会影响寄生虫的有效生长和复制能力,并且至关重要的是,其进化能力也因此逃避了人类免疫系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号