首页> 外文期刊>PLoS Genetics >Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ
【24h】

Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ

机译:有害的线粒体DNA点突变在果蝇中过分表达,表示校正缺陷的DNA聚合酶γ

获取原文
           

摘要

Mitochondrial DNA (mtDNA) mutations cause severe maternally inherited syndromes and the accumulation of somatic mtDNA mutations is implicated in aging and common diseases. However, the mechanisms that influence the frequency and pathogenicity of mtDNA mutations are poorly understood. To address this matter, we created a Drosophila mtDNA mutator strain expressing a proofreading-deficient form of the mitochondrial DNA polymerase. Mutator flies have a dramatically increased somatic mtDNA mutation frequency that correlates with the dosage of the proofreading-deficient polymerase. Mutator flies also exhibit mitochondrial dysfunction, shortened lifespan, a progressive locomotor deficit, and loss of dopaminergic neurons. Surprisingly, the frequency of nonsynonymous, pathogenic, and conserved-site mutations in mutator flies exceeded predictions of a neutral mutational model, indicating the existence of a positive selection mechanism that favors deleterious mtDNA variants. We propose from these findings that deleterious mtDNA mutations are overrepresented because they selectively evade quality control surveillance or because they are amplified through compensatory mitochondrial biogenesis. Author summary The energy needs of an animal cell are supplied by tiny organelles known as mitochondria. Each of the many mitochondria in a cell has a set of blueprints for making more mitochondria, known as mitochondrial DNA (mtDNA). As animals age, their mtDNA acquires irreversible defects called mutations, which accumulate and may cause aging. Cells can selectively destroy malfunctioning mitochondria, so we hypothesized that mitochondria with harmful mutations would be selectively destroyed. To test our theory, we created a fruit fly strain with a high mtDNA mutation rate. Our hypothesis predicts that, because mitochondria bearing harmful mtDNA mutations would be destroyed, we should detect primarily less harmful mutations in our strain. However, the mtDNA mutations we detected were more harmful than expected by chance. We suggest two possible explanations: First, mitochondria with harmful mtDNA mutations may be degraded less often because they generate little energy and are not damaged by toxic byproducts of energy production. Second, cells may compensate for harmful mtDNA mutations by stimulating mitochondria to multiply, creating more healthy mitochondria but also more mitochondria with harmful mtDNA mutations. Future studies will distinguish between these models and further advance our understanding of aging and aging related disease.
机译:线粒体DNA(mtDNA)突变会导致严重的母亲遗传综合征,并且体细胞mtDNA突变的积累与衰老和常见疾病有关。但是,影响mtDNA突变的频率和致病性的机制了解甚少。为了解决此问题,我们创建了果蝇mtDNA变异株,该株表达线粒体DNA聚合酶的校对缺陷形式。突变体果蝇的体细胞mtDNA突变频率急剧增加,与校正缺陷型聚合酶的剂量相关。 ator蝇还表现出线粒体功能障碍,寿命缩短,进行性运动功能障碍和多巴胺能神经元丧失。出人意料的是,突变体果蝇中非同义,致病性和保守位点突变的频率超过了中性突变模型的预测,表明存在有利于有害的mtDNA变体的阳性选择机制。我们从这些发现中提出,有害的mtDNA突变被过度代表,因为它们选择性地避开了质量控制监控或因为它们是通过补偿性线粒体生物发生而扩增的。作者摘要动物细胞的能量需求由称为线粒体的微小细胞器提供。细胞中的许多线粒体均具有一套用于制造更多线粒体的蓝图,称为线粒体DNA(mtDNA)。随着动物年龄的增长,它们的mtDNA会获得不可逆的缺陷,称为突变,这种缺陷会累积并可能导致衰老。细胞可以选择性破坏功能异常的线粒体,因此我们假设具有有害突变的线粒体将被选择性破坏。为了验证我们的理论,我们创建了具有高mtDNA突变率的果蝇菌株。我们的假设预测,由于带有有害mtDNA突变的线粒体将被破坏,因此我们应首先检测到菌株中危害较小的突变。但是,我们检测到的mtDNA突变的危害比偶然预期的还要有害。我们提出两种可能的解释:首先,具有有害mtDNA突变的线粒体可能较少降解,因为它们产生的能量很少,并且不受能量产生的有毒副产物的破坏。其次,细胞可通过刺激线粒体繁殖来补偿有害的mtDNA突变,从而产生更多健康的线粒体,但也会产生更多带有有害mtDNA突变的线粒体。未来的研究将区分这些模型,并进一步提高我们对衰老和衰老相关疾病的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号