首页> 外文期刊>PLoS Computational Biology >NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT
【24h】

NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT

机译:NbIT-基于新信息论的变构机制分析揭示了亮氨酸转运蛋白LeuT中功能基础的残基

获取原文
           

摘要

Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.
机译:生物分子系统结构中相互作用的残基和微区的复杂网络是信息从输入信号(如配体的浓度)到生成适当输出信号(如酶活性)的位置的可靠传播的基础。这种信息转导通常以变构的形式在分子尺度上以相对较大的距离携带信号,这对于生物分子执行的生理功能至关重要。尽管通过实验和计算已记录了变构行为,但事实证明这种形式的变构机制很难在分子水平上识别。在这里,我们介绍了一种新颖的分析框架,称为N体信息理论(NbIT)分析,该框架基于信息论,并使用生物分子系统中的结构熵度量来识别微区和充当(i)通道的单个残基用于功能站点之间的远程信息共享,以及(ii)在功能站点内组织动态的协调器。新方法应用于细菌亮氨酸转运蛋白LeuT的闭塞状态的分子动力学(MD)轨迹,可以识别功能重要的细胞内门与已知对其进行调节的底物结合位点之间的变构偶联通道。 NbIT分析还显示出可将主要参与稳定功能位点的残基与导致位点之间的变构偶联的残基区分开来。 NbIT对MD数据的分析因此揭示了生物分子系统动力学背后的严格的变构机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号