...
首页> 外文期刊>PLoS Computational Biology >Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs
【24h】

Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

机译:具有完整约束的零空间采样揭示了蛋白质Gαs的分子机制

获取原文
           

摘要

Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.
机译:蛋白质通过在各种时空尺度上在构象亚状态之间交换来执行其功能或与伴侣相互作用。在实验和计算上,结构化地表征这些交换都是具有挑战性的。大型的扩散运动通常在分子动力学模拟难以接近的时间尺度上进行,特别是对于大型蛋白质及其复合物而言。正常模式分析(NMA)的低频模式报告与生物活性有关的分子波动。但是,NMA仅限于大约最小势能函数的二阶展开,这限制了观察扩散运动的机会。相比之下,运动学几何构象采样(KGS)允许较大的扰动,同时保持显式构象约束(例如氢键)的精确几何形状。在这里,我们扩展了KGS,并表明异源三聚体刺激蛋白Gs的α亚基Gαs的构象整体表现出与其激活途径有关的结构特征。 G蛋白偶联受体(GPCR)对蛋白Gs的激活与GDP释放及其α-螺旋结构域的构象变化有关。我们的方法揭示了一个耦合的α螺旋结构域打开运动,同时,Gα螺旋α5采样了一个激活的构象。这些运动在激活状态下被缓和。运动集中在Gαs核苷酸结合位点附近的动态中心,并辐射到螺旋α4。我们发现,比较的基于NMA的集合低估了运动的幅度。另外,合奏不能预测完整激活途径的可接受方向。两者合计,我们的研究结果表明具有明确的,完整的约束的零空间采样产生的集合体阐明了GDP释放和蛋白质Gs活化所涉及的分子机制,并进一步在Gαs的关键结构要素之间建立了构象偶联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号