...
首页> 外文期刊>PLoS Computational Biology >Under-Dominance Constrains the Evolution of Negative Autoregulation in Diploids
【24h】

Under-Dominance Constrains the Evolution of Negative Autoregulation in Diploids

机译:优势不足约束二倍体负自动调节的演变。

获取原文

摘要

Regulatory networks have evolved to allow gene expression to rapidly track changes in the environment as well as to buffer perturbations and maintain cellular homeostasis in the absence of change. Theoretical work and empirical investigation in Escherichia coli have shown that negative autoregulation confers both rapid response times and reduced intrinsic noise, which is reflected in the fact that almost half of Escherichia coli transcription factors are negatively autoregulated. However, negative autoregulation is rare amongst the transcription factors of Saccharomyces cerevisiae. This difference is surprising because E. coli and S. cerevisiae otherwise have similar profiles of network motifs. In this study we investigate regulatory interactions amongst the transcription factors of Drosophila melanogaster and humans, and show that they have a similar dearth of negative autoregulation to that seen in S. cerevisiae. We then present a model demonstrating that this stiking difference in the noise reduction strategies used amongst species can be explained by constraints on the evolution of negative autoregulation in diploids. We show that regulatory interactions between pairs of homologous genes within the same cell can lead to under-dominance — mutations which result in stronger autoregulation, and decrease noise in homozygotes, paradoxically can cause increased noise in heterozygotes. This severely limits a diploid's ability to evolve negative autoregulation as a noise reduction mechanism. Our work offers a simple and general explanation for a previously unexplained difference between the regulatory architectures of E. coli and yeast, Drosophila and humans. It also demonstrates that the effects of diploidy in gene networks can have counter-intuitive consequences that may profoundly influence the course of evolution.
机译:调节网络已经发展到允许基因表达快速跟踪环境变化以及缓冲扰动并在无变化的情况下保持细胞稳态的过程。大肠杆菌的理论研究和实证研究表明,负的自动调节功能既可以快速响应,又可以减少固有噪声,这反映在几乎一半的大肠杆菌转录因子都被负自动调节这一事实上。然而,在啤酒酵母的转录因子中很少出现负自调控。这种差异是令人惊讶的,因为否则大肠杆菌和酿酒酵母具有类似的网络基序特征。在这项研究中,我们调查了果蝇和人类果蝇的转录因子之间的调节相互作用,并表明它们与酿酒酵母中所见的负自动调节相似。然后,我们提出了一个模型,该模型表明,在物种间使用的降噪策略中,这种令人兴奋的差异可以通过限制二倍体中负自动调节的进化来解释。我们发现同一细胞内的同源基因对之间的调节相互作用可导致显性不足-突变导致更强的自调节,并降低纯合子中的噪音,反常地会导致杂合子中噪音的增加。这严重限制了二倍体发展消极自动调节作为降噪机制的能力。我们的工作为大肠杆菌和酵母,果蝇和人类的调控结构之间以前无法解释的差异提供了简单而通用的解释。它还表明,二倍体在基因网络中的作用可能会产生与直觉相反的后果,可能会深刻影响进化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号