...
首页> 外文期刊>PLoS Computational Biology >Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses
【24h】

Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses

机译:使用随机起搏和频域分析发现心脏系统的动力学

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤?1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
机译:心脏动作电位持续时间(APD)的交替信号是众所周知的导致心律失常的机制,它是由动态不稳定性引起的。传统上,通过检查APD复原并通过推导APD复原斜率作为预测标记来研究交替烷的倾向。但是,实验表明,这样的标记对于预测交替素并不总是准确的。使用已知表现出膜电位和Ca2 +循环不稳定动力学的数学心室细胞模型,我们证明可以通过在基本CL(BCL)附近随机变化的周期长度(CL)处起搏并评估转移来获得准确的标记使用自回归移动平均值(ARMA)模型在CL和APD的时间序列之间建立函数。该传递函数的第一极点对应于心脏系统的主导特征模式的特征值(λalt),该特征值预测当λalt≤?1时会出现交替信号。对于不同的BCL,使用特征模式分析获得λalt的控制值,并将其与在随机起搏协议的仿真中使用ARMA模型拟合估计的传递函数的第一极点进行比较。在单元模型的所有版本中,此极点均提供了λalt的准确估计。此外,在BCL缓慢下降或模拟药物应用期间,该方法通过推断估计的λalt的时间过程来预测交替素的发作。总之,随机起搏和ARMA模型识别代表了一种预测交替素的新颖方法,而无需对其离子机制进行任何假设。因此,它应在实验上适用于任何类型的心肌细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号