...
首页> 外文期刊>PLoS Computational Biology >Using Steered Molecular Dynamics to Predict and Assess Hsp70 Substrate-Binding Domain Mutants that Alter Prion Propagation
【24h】

Using Steered Molecular Dynamics to Predict and Assess Hsp70 Substrate-Binding Domain Mutants that Alter Prion Propagation

机译:使用操纵分子动力学来预测和评估可改变Pri病毒繁殖的Hsp70底物结合域突变体。

获取原文
           

摘要

Genetic screens using Saccharomyces cerevisiae have identified an array of cytosolic Hsp70 mutants that are impaired in the ability to propagate the yeast [PSI+] prion. The best characterized of these mutants is the Ssa1 L483W mutant (so-called SSA1-21), which is located in the substrate-binding domain of the protein. However, biochemical analysis of some of these Hsp70 mutants has so far failed to provide major insight into the specific functional changes in Hsp70 that cause prion impairment. In order to gain a better understanding of the mechanism of Hsp70 impairment of prions we have taken an in silico approach and focused on the Escherichia coli Hsp70 ortholog DnaK. Using steered molecular dynamics simulations (SMD) we demonstrate that DnaK variant L484W (analogous to SSA1-21) is predicted to bind substrate more avidly than wild-type DnaK due to an increase in numbers of hydrogen bonds and hydrophobic interactions between chaperone and peptide. Additionally the presence of the larger tryptophan side chain is predicted to cause a conformational change in the peptide-binding domain that physically impairs substrate dissociation. The DnaK L484W variant in combination with some SSA1-21 phenotypic second-site suppressor mutations exhibits chaperone-substrate interactions that are similar to wild-type protein and this provides a rationale for the phenotypic suppression that is observed. Our computational analysis fits well with previous yeast genetics studies regarding the functionality of the Ssa1-21 protein and provides further evidence suggesting that manipulation of the Hsp70 ATPase cycle to favor the ADP/substrate-bound form impairs prion propagation. Furthermore, we demonstrate how SMD can be used as a computational tool for predicting Hsp70 peptide-binding domain mutants that impair prion propagation.
机译:使用酿酒酵母的遗传筛选已鉴定出一系列胞质Hsp70突变体,这些突变体在繁殖酵母[PSI +] pr病毒的能力上受到损害。这些突变体中最具特征的是Ssa1 L483W突变体(所谓的SSA1-21),它位于蛋白质的底物结合域中。但是,到目前为止,对其中某些Hsp70突变体的生化分析未能提供对导致failed病毒损伤的Hsp70特定功能变化的主要见解。为了更好地了解of病毒Hsp70损伤的机制,我们采用了计算机方法,重点研究了大肠杆菌Hsp70 ortholog DnaK。使用操纵分子动力学模拟(SMD),我们证明了DnaK变体L484W(类似于SSA1-21)被预测比野生型DnaK更能结合底物,这是由于氢键数量增加以及分子​​伴侣和多肽之间的疏水相互作用所致。另外,预计较大色氨酸侧链的存在会引起肽结合域的构象变化,从而物理上损害底物的解离。 DnaK L484W变体与一些SSA1-21表型第二位抑制子突变的结合表现出与野生型蛋白相似的分子伴侣-底物相互作用,这为观察到的表型抑制提供了理论依据。我们的计算分析与先前关于Ssa1-21蛋白功能的酵母遗传学研究非常吻合,并提供了进一步的证据,表明操纵Hsp70 ATPase循环以促进ADP /底物结合形式会损害病毒的繁殖。此外,我们演示了如何将SMD用作预测损害病毒传播的Hsp70肽结合域突变体的计算工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号