...
首页> 外文期刊>PLoS Computational Biology >Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus
【24h】

Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus

机译:网络架构对视交叉上神经节节律振荡的同步和夹带特性的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus constitutes the central circadian pacemaker. The SCN receives light signals from the retina and controls peripheral circadian clocks (located in the cortex, the pineal gland, the liver, the kidney, the heart, etc.). This hierarchical organization of the circadian system ensures the proper timing of physiological processes. In each SCN neuron, interconnected transcriptional and translational feedback loops enable the circadian expression of the clock genes. Although all the neurons have the same genotype, the oscillations of individual cells are highly heterogeneous in dispersed cell culture: many cells present damped oscillations and the period of the oscillations varies from cell to cell. In addition, the neurotransmitters that ensure the intercellular coupling, and thereby the synchronization of the cellular rhythms, differ between the two main regions of the SCN. In this work, a mathematical model that accounts for this heterogeneous organization of the SCN is presented and used to study the implication of the SCN network topology on synchronization and entrainment properties. The results show that oscillations with larger amplitude can be obtained with scale-free networks, in contrast to random and local connections. Networks with the small-world property such as the scale-free networks used in this work can adapt faster to a delay or advance in the light/dark cycle (jet lag). Interestingly a certain level of cellular heterogeneity is not detrimental to synchronization performances, but on the contrary helps resynchronization after jet lag. When coupling two networks with different topologies that mimic the two regions of the SCN, efficient filtering of pulse-like perturbations in the entrainment pattern is observed. These results suggest that the complex and heterogeneous architecture of the SCN decreases the sensitivity of the network to short entrainment perturbations while, at the same time, improving its adaptation abilities to long term changes.
机译:在哺乳动物中,下丘脑的视交叉上核(SCN)构成了昼夜节律的中心。 SCN从视网膜接收光信号并控制周围的生物钟(位于皮层,松果体,肝脏,肾脏,心脏等)。昼夜节律系统的这种分层组织确保了生理过程的正确时机。在每个SCN神经元中,相互连接的转录和翻译反馈环使时钟基因的昼夜节律表达成为可能。尽管所有神经元都具有相同的基因型,但是在分散的细胞培养中单个细胞的振荡是高度异质的:许多细胞呈现衰减的振荡,并且振荡的周期因细胞而异。此外,在SCN的两个主要区域之间,确保细胞间偶联并从而确保细胞节律同步的神经递质有所不同。在这项工作中,提出了一种解释SCN的这种异构组织的数学模型,并将其用于研究SCN网络拓扑对同步性和夹带特性的影响。结果表明,与随机连接和局部连接相比,无标度网络可以获得更大幅度的振荡。具有小世界特性的网络(例如本工作中使用的无标度网络)可以更快地适应明暗周期(时差)中的延迟或提前。有趣的是,一定程度的细胞异质性不会损害同步性能,相反,它有助于在时差后重新进行同步。当耦合具有模仿SCN的两个区域的不同拓扑的两个网络时,可以观察到夹带模式中脉冲状摄动的有效过滤。这些结果表明,SCN复杂而异构的体系结构降低了网络对短时间夹带扰动的敏感性,同时提高了其对长期变化的适应能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号