...
首页> 外文期刊>PLoS Computational Biology >Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation
【24h】

Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

机译:通过扩散近似准确快速地模拟基于电导的模型神经元中的通道噪声

获取原文

摘要

Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.
机译:随机通道门控是内在神经元噪声的主要来源,其在微电路和网络级的功能后果仅得到部分探讨。对大集合的生物物理模型神经元中的通道噪声的系统研究要求使用快速数值方法。实际上,精确的技术通常是基于马尔可夫模型,对单个离子通道的随机打开和关闭进行微观模拟,其计算量对于下一代大型大脑计算机模型是禁止的。在这项工作中,我们可操作地定义了一个过程,该过程将描述电压或配体门控的膜离子电导率的任何马尔可夫模型转换为有效的随机版本,其计算机模拟非常有效,而不会影响精度。我们的近似基于改进的类似于Langevin的方法,该方法采用了随机微分方程,没有采用蒙特卡洛方法。与最近在文献中争论的较早的提议相反,我们的近似准确地再现了在各种条件下(从自然到诱发的响应特征)的精确微观模拟的统计特性。此外,我们的方法不限于霍奇金-赫克斯利钠和钾电流,并且适用于各种电压和配体门控离子电流。作为副产品,通过标准概率演算对精确马尔可夫方案中出现的属性进行分析,使我们首次能够分析性地确定先前提议的不准确性来源,同时为本文提出的修改和改进提供了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号