...
首页> 外文期刊>PLoS Computational Biology >Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling
【24h】

Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling

机译:果蝇翼原基在A / P边界的细胞分选:巩固观察到的Hh信号非本地影响的计算模型。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Non-intermingling, adjacent populations of cells define compartment boundaries; such boundaries are often essential for the positioning and the maintenance of tissue-organizers during growth. In the developing wing primordium of Drosophila melanogaster, signaling by the secreted protein Hedgehog (Hh) is required for compartment boundary maintenance. However, the precise mechanism of Hh input remains poorly understood. Here, we combine experimental observations of perturbed Hh signaling with computer simulations of cellular behavior, and connect physical properties of cells to their Hh signaling status. We find that experimental disruption of Hh signaling has observable effects on cell sorting surprisingly far from the compartment boundary, which is in contrast to a previous model that confines Hh influence to the compartment boundary itself. We have recapitulated our experimental observations by simulations of Hh diffusion and transduction coupled to mechanical tension along cell-to-cell contact surfaces. Intriguingly, the best results were obtained under the assumption that Hh signaling cannot alter the overall tension force of the cell, but will merely re-distribute it locally inside the cell, relative to the signaling status of neighboring cells. Our results suggest a scenario in which homotypic interactions of a putative Hh target molecule at the cell surface are converted into a mechanical force. Such a scenario could explain why the mechanical output of Hh signaling appears to be confined to the compartment boundary, despite the longer range of the Hh molecule itself. Our study is the first to couple a cellular vertex model describing mechanical properties of cells in a growing tissue, to an explicit model of an entire signaling pathway, including a freely diffusible component. We discuss potential applications and challenges of such an approach.
机译:非交织的相邻细胞群体定义了区室边界;这样的边界通常对于组织在生长过程中的定位和维护至关重要。在果蝇的发育中的翼原基中,需要由分泌蛋白刺猬(Hh)发出的信号来维持区室边界。然而,Hh输入的确切机制仍然知之甚少。在这里,我们将干扰Hh信号的实验观察与细胞行为的计算机模拟相结合,并将细胞的物理特性与其Hh信号状态联系起来。我们发现,Hh信号的实验性破坏对细胞分选的影响令人惊讶地远离隔室边界,这与以前的模型将Hh的影响仅限于隔室边界本身相反。我们通过模拟Hh扩散和转导以及沿细胞间接触表面的机械张力,总结了我们的实验观察结果。有趣的是,在Hh信号传导不能改变细胞的总体张力的假设下,相对于相邻细胞的信号传导状态,它只能在细胞内部局部重新分配,从而获得最佳结果。我们的结果提出了一种场景,其中假定的Hh目标分子在细胞表面的同型相互作用转化为机械力。这样的情况可以解释为什么尽管Hh分子本身的作用范围更长,但Hh信号的机械输出似乎仍局限于隔室边界。我们的研究是首次将描述生长组织中细胞机械特性的细胞顶点模型与包括自由扩散成分在内的整个信号通路的显式模型相结合。我们讨论了这种方法的潜在应用和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号