首页> 外文期刊>PLoS Computational Biology >Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability
【24h】

Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability

机译:随机门控离子通道通过依赖于活动的峰值概率调制实现图案化的峰值发射

获取原文
获取外文期刊封面目录资料

摘要

The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.
机译:突触输入到尖峰输出模式的转换是一项基本操作,它由神经元表达的离子通道的特定互补决定。尽管已经确定单个离子通道蛋白会在传导状态和非传导状态之间进行随机过渡,但是大多数突触整合模型都是确定性的,而对随机门控离子通道之间相互作用的功能后果知之甚少。在这里,我们显示了通过内向或内向门控离子通道实施的内侧内嗅皮质第二层星状神经元模型可以复制星状神经元的静息膜特性,但只有该模型的随机版本才能充分说明感知力在去极化状态下,从星状神经元记录的膜电位波动和峰值输出的聚集模式。我们证明了随机模型实现了一个一般机制的示例,该机制通过尖峰发射概率中与活动有关的变化来对神经元输出进行模式化。与通过缓慢改变模型参数状态产生尖峰模式的确定性机制不同,这种一般的随机机制不需要保留超过单个尖峰持续时间及其相关的超极化后的信息。取而代之的是,由于从超极化后的尖峰恢复过程中HCN通道的激活驱动着发射概率的瞬时增加,所以在星状神经元的随机模型中出现了尖峰的聚集模式。使用此模型,我们可以推断出随机离子通道门控可能会影响体内发射模式的条件,并预测HCN通道功能的修饰对体内发射模式的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号