首页> 外文期刊>PLoS Computational Biology >Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment
【24h】

Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment

机译:自我调节策略,反馈定时和血液动力学特性在模拟fMRI神经反馈环境中调节学习

获取原文
           

摘要

Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner.
机译:大脑活动的直接操纵可用于调查因果行为与大脑的关系。当前的非侵入性神经刺激技术太粗糙,无法操纵与功能磁共振成像记录的细粒度空间模式相关的行为。但是,可以通过让人们学会自我调节自己记录的神经活动来操纵这些活动模式。由于许多参与者无法自我调节,因此这项称为fMRI神经反馈的技术面临挑战。由于在MRI扫描仪中进行此类研究的成本和复杂性,人们尚未很好地理解这种无反应者效应的原因。在这里,我们调查了通过功能磁共振成像测量的血液动力学反应的时间动态,作为无反应者效应的潜在原因。学会自我调节血液动力学反应涉及一个困难的时间分配问题,因为该信号随着时间的流逝既延迟又模糊。对这个问题至关重要的两个因素是规定的自我调节策略(认知或自动)和反馈时间(连续或间歇)。在这里,我们试图评估这些因素如何与fMRI的时间动态相互作用,而无需使用MRI扫描仪。我们首先通过让参与者学习使用一维策略来调节模拟的神经反馈信号来研究认知策略的作用:按下两个按钮之一以旋转刺激视觉皮层模型的视觉光栅。在这种情况下,与间歇反馈相比,连续反馈导致调节更快。然而,由于许多神经反馈研究都规定了隐式的自我调节策略,因此我们创建了基于奖励的自动学习的计算模型,以检查该结果是否适用于自动处理。当基于fMRI的血液动力学反馈被延迟和模糊时,与连续反馈相比,该模型从间歇反馈中更加可靠地学习。这些结果表明,不同的自我调节机制更喜欢不同的反馈定时,并且可以在部署到MRI扫描仪中之前通过模拟有效地探索和优化这些因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号