首页> 外文期刊>Physical Review. Accelerators and Beams >Characterization and error analysis of an span class="aps-inline-formula"math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"miN/mimo×/momiN/mi/math/span unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing
【24h】

Characterization and error analysis of an span class="aps-inline-formula"math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"miN/mimo×/momiN/mi/math/span unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

机译:class =“ aps-inline-formula”> N < / mi> × N 展开过程应用于已过滤的光电X射线探测器阵列。一,配方与试验

获取原文
           

摘要

An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by $z$-pinch plasmas at the $Z$ pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold method.---The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction ${S}_{mathrm{unfold}}(E,t)$---five histogram x-ray bins $j$ over the x-ray interval, $137ensuremath{le}Eensuremath{le}2300ext{ }ext{ }mathrm{eV}$ at each time step $t$---depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux ${mathcal{F}}_{mathrm{unfold}}$ is estimated as $ensuremath{int}{S}_{mathrm{unfold}}(E,t)dE$. (b) Validation with simulations.---Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included---but were not limited to---Planckian spectra ${S}_{bb}(E,T)$ ($25ensuremath{le}Tensuremath{le}250ext{ }ext{ }mathrm{eV}$), from which noise-free channel data were simulated and unfolded. For Planckian simulations with $125ensuremath{le}Tensuremath{le}250ext{ }ext{ }mathrm{eV}$ and typical responses, the binwise unfold values ${S}_{j}$ and the corresponding binwise averages $?{S}_{bb}{?}_{j}$ agreed to $ensuremath{sim}20%$, except where ${S}_{bb}ensuremath{ll}mathrm{max}?{{S}_{bb}}$. Occasionally, unfold values ${S}_{j}ensuremath{lesssim}0$ (artifacts) were encountered. The algorithm recovered $ensuremath{gtrsim}90%$ of the x-ray flux over the wider range, $75ensuremath{le}Tensuremath{le}250ext{ }ext{ }mathrm{eV}$. For lower $T$, the test and unfolded spectra increasingly diverged as larger fractions of ${S}_{bb}(E,T)$ fell below the detection threshold ($ensuremath{sim}137ext{ }ext{ }mathrm{eV}$) of the diagnostic. (c) Comparison with other analyses and diagnostics.---The results of the histogram algorithm are compared with other analyses, including a test with data acquired by the DANTE filtered-XRD array at the NOVA laser facility. Overall, the histogram algorithm is found to be most useful for x-ray flux estimates, as opposed to spectral details. The following companion paper [D. L. Fehl et al., Phys. Rev. ST Accel. Beams 13, 120403 (2010)] considers (a) uncertainties in ${S}_{mathrm{unfold}}$ and ${mathcal{F}}_{mathrm{unfold}}$ induced by both data noise and calibrational errors in the response functions; and (b) generalization of the algorithm to arbitrary spectra. These techniques apply to other diagnostics with analogous channel responses and supported by unfold algorithms of invertible matrix form.
机译:详细描述并表征了一种算法,该算法用于从五通道,滤波后的X射线探测器阵列(XRD)获得的数据进行光谱重建(展开)和光谱积分通量估计。该诊断程序是一种宽通道光谱仪,主要用于测量$ Z $脉冲功率加速器(Sandia国家实验室,Albuquerque,新墨西哥,美国)由z $捏的等离子体发射的随时间变化的软X射线通量。 ,它既可以用作等离子体探针,也可以用作加速器性能的量表。适用于在线分析的展开方法自然是基于有关X射线源和通道响应的光谱特性的一般假设而产生的。先验约束控制反演的不适定性。展开的频谱不假定为普朗克谱。这项研究分为两篇连续的论文。本文考虑了三个主要问题:(a)展开方法的公式化-描述了导致该算法的数学背景,假设和步骤:频谱重建$ {S} _ { mathrm {unfold}}( E,t)$-在x射线间隔内的五个直方图x射线箱$ j $,$ 137 ensuremath { le} E ensuremath { le} 2300 text {} text {} mathrm { eV} $在每个时间步长$ t $ ---取决于校准通道响应的形状和重叠以及传递到等离子体的最大电功率。 X射线通量$ { mathcal {F}} _ { mathrm {unfold}} $估计为$ ensuremath { int} {S} _ { mathrm {unfold}}(E,t)dE $ 。 (b)通过仿真进行验证。-描述了具有已知静态和时变光谱的展开算法的测试。这些光谱包括-但不限于-普朗克光谱$ {S} _ {bb}(E,T)$($ 25 ensuremath { le} T ensuremath { le} 250 text {} text {} mathrm {eV} $),从中模拟并展开了无噪声的通道数据。对于具有$ 125 ensuremath { le} T ensuremath { le} 250 text {} text {} mathrm {eV} $和典型响应的Planckian模拟,按二进制展开值$ {S} _ {j} $和相应的双向平均$?{S} _ {bb} {?} _ {j} $同意$ ensuremath { sim} 20%$,除非$ {S} _ {bb} ensuremath { ll } mathrm {max}?{{S} _ {bb}} $。有时会遇到展开值$ {S} _ {j} ensuremath { lesssim} 0 $(工件)。该算法在更宽的范围内恢复了$ ensuremath { gtrsim} 90%的X射线通量,$ 75 ensuremath { le} T ensuremath { le} 250 text {} text {} mathrm { eV} $。对于较低的$ T $,随着较大部分的$ {S} _ {bb}(E,T)$降至检测阈值以下($ ensuremath { sim} 137 text {} ,测试和展开的光谱越来越分歧。文本{} mathrm {eV} $)。 (c)与其他分析和诊断方法的比较。-将直方图算法的结果与其他分析进行比较,包括对NOVATE激光设备的DANTE滤波XRD阵列获得的数据进行测试。总体而言,发现直方图算法对于X射线通量估计最有用,这与频谱细节相反。以下配套文件[D. L.Fehl等人,《物理学报》 Rev. ST加速。 Beams 13,120403(2010)]考虑(a)两种数据噪声引起的$ {S} _ { mathrm {unfold}} $和$ { mathcal {F}} _ { mathrm {unfold}} $中的不确定性响应功能中的校准误差; (b)将算法推广到任意光谱。这些技术适用于具有类似通道响应的其他诊断,并由可逆矩阵形式的展开算法支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利