首页> 外文期刊>Plant Biotechnology Journal >Genetic modification of cassava for enhanced starch production
【24h】

Genetic modification of cassava for enhanced starch production

机译:对木薯进行遗传修饰以提高淀粉产量

获取原文
           

摘要

To date, transgenic approaches to biofortify subsistence crops have been rather limited. This is particularly true for the starchy root crop cassava ( Manihot esculenta Crantz). Cassava has one of the highest rates of CO 2 fixation and sucrose synthesis for any C3 plant, but rarely reaches its yield potentials in the field. It was our hypothesis that starch production in cassava tuberous roots could be increased substantially by increasing the sink strength for carbohydrate. To test this hypothesis, we generated transgenic plants with enhanced tuberous root ADP?¢????glucose pyrophosphorylase (AGPase) activity. This was achieved by expressing a modified form of the bacterial glgC gene under the control of a Class I patatin promoter. AGPase catalyses the rate?¢????limiting step in starch biosynthesis, and therefore the expression of a more active bacterial form of the enzyme was expected to lead to increased starch production. To facilitate maximal AGPase activity, we modified the Escherichia coli glgC gene (encoding AGPase) by site?¢????directed mutagenesis (G336D) to reduce allosteric feedback regulation by fructose?¢????1,6?¢????bisphosphate. Transgenic plants (three) expressing the glgC gene had up to 70% higher AGPase activity than control plants when assayed under conditions optimal for plant and not bacterial AGPase activity. Plants having the highest AGPase activities had up to a 2.6?¢????fold increase in total tuberous root biomass when grown under glasshouse conditions. In addition, plants with the highest tuberous root AGPase activity had significant increases in above?¢????ground biomass, consistent with a possible reduction in feedback inhibition on photosynthetic carbon fixation. These results demonstrate that targeted modification of enzymes regulating source?¢????sink relationships in crop plants having high carbohydrate source strengths is an effective strategy for increasing carbohydrate yields in sink tissues.
机译:迄今为止,生物强化生计作物的转基因方法相当有限。对于淀粉状块根木薯(Manihot esculenta Crantz)尤其如此。木薯具有任何C3植物中最高的CO 2固定率和蔗糖合成率,但在田间很少能达到其产量潜力。我们的假设是,通过增加碳水化合物的吸收强度,可以大大增加木薯块茎根中的淀粉产量。为了检验该假设,我们产生了具有增强的块茎根ADP 1-β-葡萄糖焦磷酸化酶(AGPase)活性的转基因植物。这是通过在I类patatin启动子的控制下表达修饰形式的细菌glgC基因来实现的。 AGP酶催化淀粉生物合成中的速率限制步骤,因此预期酶的活性更高的细菌形式的表达会导致淀粉产量增加。为了促进最大的AGPase活性,我们通过定点诱变(G336D)修饰了大肠杆菌glgC基因(编码AGPase),以减少果糖的变构反馈调节。 ??二磷酸酯。在最适合植物而非细菌AGPase活性的条件下进行分析时,表达glgC基因的转基因植物(三种)的AGPase活性比对照植物高70%。在温室条件下生长时,具有最高AGPase活性的植物的总块根生物量最多增加了2.6倍。另外,具有最高块根根AGP酶活性的植物的地上生物量显着增加,这与光合碳固定的反馈抑制作用的可能减少相一致。这些结果表明,在具有高碳水化合物源强度的农作物中,有针对性地修饰调节源-库-库关系的酶是增加库组织中碳水化合物产量的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号