首页> 外文期刊>Physical Review X >Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons
【24h】

Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

机译:形状和对称性确定硬正则多边形的二维熔化转变

获取原文
           

摘要

The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3 ≤ n ≤ 14 vertices using massively parallel Monte?Carlo simulations of up to 1 × 10 6 particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n . We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤ n ≤ 14 , arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x -atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In contrast, due to symmetry incompatibility between the ordered fluid and solid, systems of pentagons and plane-filling fourfold pentilles display a one-step first-order melting of the solid to the isotropic fluid with no intermediate phase.
机译:二维系统的熔融转变是凝聚态物质和统计物理学中的一个基本问题,通过应用计算资源和算法,该问题已显着发展。二维系统为3D系统中未发现的新颖阶段和相变场景提供了机会,但是这些阶段敏感地取决于系统,因此,预测任何给定的2D系统将如何运行仍然是一个挑战。在这里,我们报告了使用3×n≤14个顶点的所有硬规则多边形的熔融转变附近的相行为的综合模拟研究,该模拟使用的是多达1×10 6粒子的大规模平行蒙特卡洛模拟。通过研究这一系列形状,我们显示出熔化转变取决于粒子形状和对称性因素,它们可以共同预测给定n发生三种不同熔化情况中的哪一种。我们证明,只有七个边缘的多边形系统的行为就像硬盘一样。它们从固体到六方流体连续熔融,然后经历从六方相到各向同性流体相的一阶转变。我们表明,这种行为(对于所有7≤n≤14成立)是由粒子之间的弱熵力引起的。强大的方向性熵力使多边形的边数少于七个,并在流体中施加局部顺序。这些力可以增强或抑制过渡的不连续性,具体取决于流体中的局部顺序是否与固体中的局部顺序兼容。结果,三角形,正方形和六边形的系统分别显示出Kosterlitz-Thouless-Halperin-Nelson-Young(KTHNY)预测的各向同性流体与三相,四相和六相相之间的连续过渡,以及从适当相向连续相的过渡x-立体。特别是,我们发现六边形系统显示出连续的两步KTHNY熔化。相反,由于有序流体与固体之间的对称不相容性,五边形和平面填充四重戊烯体系显示出固体到各向同性流体的一步一步熔融,没有中间相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号