...
首页> 外文期刊>Physical review, D >Combining Cherenkov and scintillation detector observations with simulations to deduce the nature of high-energy radiation excesses during thunderstorms
【24h】

Combining Cherenkov and scintillation detector observations with simulations to deduce the nature of high-energy radiation excesses during thunderstorms

机译:将Cherenkov和闪烁探测器的观测结果与模拟结果相结合,可以推断出雷暴期间高能辐射超标的性质

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We present co-observations of three strong count-rate enhancements associated with thunderstorms observed over 17 April 2015 to 23 September 2015 by the High Altitude Water Cherenkov (HAWC) array, and a suite of small scintillation detectors comprising the Gamma-ray Observations During Overhead Thunderstorms (GODOT) instrument. Because the HAWC array is most sensitive to ionizing radiation at high energies ( > 100 ? ? MeV ), and the small scintillation detectors are most sensitive to ionizing radiation at low energies ( 3 – 20 ? ? MeV ), we investigate using the ratio of these detector counting rates variations to infer spectral characteristics of these enhancements, and understand the physics behind these thunderstorm accelerator mechanisms. We consider two extreme mechanisms that can produce these enhancements: a point source of relativistic runaway electron avalanches (RREA), and modification of the background cosmic-ray spectrum (MOS) from an electric field profile that is everywhere below the RREA threshold. We simulate the responses of HAWC and the GODOT 12.7 ? ? cm × ? 12.7 ? ? cm NaI(Tl) scintillator and show that their ratio can discern between the two models, and that the observed thunderstorm rate enhancements are incompatible with the spectra from a point source of RREA, but consistent with our model of MOS for thunderstorm potentials within the range of ? 250 to 250?MV.
机译:我们将共同观测高海拔水切伦科夫(HAWC)阵列在2015年4月17日至2015年9月23日观测到的与雷暴相关的三种强计数率增强,以及一套由顶空伽玛射线观测组成的小型闪烁探测器雷暴(GODOT)仪器。由于HAWC阵列对高能量(> 100?MeV)的电离辐射最敏感,而小型闪烁探测器对低能量(3 – 20?MeV)的电离辐射最敏感,因此我们使用这些探测器计数率的变化可以推断出这些增强特征的频谱特征,并了解这些雷暴加速器机制背后的物理原理。我们考虑可以产生这些增强作用的两种极端机制:相对论失控电子雪崩(RREA)的点源,以及来自电场分布的背景宇宙射线光谱(MOS)的变化,该电场分布在RREA阈值以下。我们模拟了HAWC和GODOT 12.7的响应。 ?厘米×? 12.7? ? cm NaI(Tl)闪烁体,并表明它们的比率可以在两个模型之间辨别,并且观察到的雷暴速率增强与RREA点源的光谱不兼容,但与我们的MOS模型在该范围内的雷暴电势一致的? 250至250?MV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号