...
首页> 外文期刊>PCI journal >Study on Cover Depth for Prestressed Concrete Bridges in Airborne-Chloride Environments
【24h】

Study on Cover Depth for Prestressed Concrete Bridges in Airborne-Chloride Environments

机译:机载氯化物环境下预应力混凝土桥梁覆盖深度研究

获取原文
           

摘要

style="text-align: left;">In Japan, prestressed/reinforced concrete bridges often suffer deterioration from steel corrosion in the chloride-laden air of marine environments with high concentrations of airborne chloride particles.  Only a few decades after erection, several prestressed concrete bridges have already been replaced due to significant corrosion in the main girders. To develop a reasonable design policy for building  more durable concrete bridges that require less maintenance, the performance of conventional concrete cover as corrosion protection in coastal environments needs to be properly evaluated. In this paper,  the authors address the effectiveness of conventional concrete cover with a water-cement ratio  of 0.36 and 0.43 in airborne-chloride environments and propose a realistic evaluation method based on Japanese surveys of airborne chloride distribution and  deterioration in existing concrete highway bridges. The proposed evaluation method uses the chloride diffusion coefficient for uncracked concrete exposed to the chloride atmosphere and the boundary chloride level based on its relationship to airborne chloride  levels. The results of this research provide the basis for a cogent policy for corrosion protection in coastal areas for concrete bridges with 100-year design lives. >References style="text-align: left;">1. Public Works Research Institute, March 2001, Investigation on Life Cycle Cost of Concrete Bridgesa€”Deterioration and Maintenance Cost of Concrete Bridge, Technical Memorandum of PWRI No.  3811, Tsukuba, Japan. (in Japanese) style="text-align: left;">2. Virmani, Y. P. and Clemena, G. G., September 1998, a€?Corrosion Protection-Concrete Bridges,a€? Report No. FHWA-RD-98- 088, Federal Highway Administration, Washington, D.C. style="text-align: left;">3. Kessler, R. J. and Powers, R. G., September 1987, a€?Corrosion evaluation of substructure Long Key Bridge,a€? Interim Report, Florida Department of Transportation. style="text-align: left;">4. Kessler, R. J. and Powers, R. G., August 1988, a€?Corrosion of Epoxy Coated Rebar Keys Segmental Bridges Monroe County,a€? Report No. 88-8A, Florida Department of Transportation. style="text-align: left;">5. Pfeifer, D. W., 2000, target="_blank" title="a€?High Performance Concrete and Reinforcing Steel with a 100-Year Service Life,a€?" href="http://dx.doi.org/10.15554/pcij.05012000.46.54 ">a€?High Performance Concrete and Reinforcing Steel with a 100-Year Service Life,a€? PCI Journal, V. 45, No. 3, May-June 2000, pp. 46-54. style="text-align: left;">6. McDonald, D. B.; Pfeifer, D. W.; and Sherman, M. R., December 1998, a€?Corrosion Evaluation of Epoxy-Coated, Metallic Reinforcing Bars in Concrete,a€? Report No. FHWA-RD-98-153, Federal   Highway Administration, Washington, D.C., 137 pp. style="text-align: left;">7. McDonald, D. B.; Sherman, M. R.; Pfeifer, D. W.; and Virmani, Y. P., 1995, a€?Stainless Steel Reinforcing as Corrosion Protection,a€? Concrete International, V. 17, No. 5, May 1995, pp. 65-70. style="text-align: left;">8. Poston, R. W.; Carrasquillo, R. L.; and Breen, J. E., 1987, target="_blank" title="a€?Durability of Post-tensioned Bridge Decks,a€?" href="http://dx.doi.org/10.14359/1622 ">a€?Durability of Post-tensioned Bridge Decks,a€? ACI Materials Journal, July-August 1987, pp. 315-326. style="text-align: left;">9. Smith, J. L. and Virmani, Y. P., August 1996, a€?Performance of Epoxy Coated Rebars in Bridge Decks,a€? Report No. FHWARD- 96-092, Federal Highway Administration, Washington, D.C. style="text-align: left;">10. Sagues, A. A., et al., May 1994, a€?Corrosion of Epoxy Coated Rebar in Florida Bridges,a€? Final Report, Florida Department of Transportation. style="text-align: left;">11. Public Works Research Institute, December 2000, a€?Study on Prestressed Concrete Bridges Minimizing Maintenance
机译:style =“ text-align:left;”>在日本,预应力/钢筋混凝土桥梁经常在海洋环境中含有高浓度的空气中氯化物颗粒的含氯空气中遭受钢腐蚀而恶化。安装后仅几十年,由于主梁受到严重腐蚀,已经更换了几座预应力混凝土桥。为了制定合理的设计策略来建造需要更少维护的更耐用的混凝土桥梁,需要对常规混凝土保护层在沿海环境中的防腐蚀性能进行适当评估。在本文中,作者阐述了水灰比为0.36和0.43的常规混凝土覆盖层在机载氯化物环境中的有效性,并基于日本对现有混凝土公路桥梁中机载氯分布和劣化的调查,提出了一种现实的评估方法。拟议的评估方法基于暴露于氯化物气氛中的未破裂混凝土的氯化物扩散系数和边界氯化物含量,基于其与空气中氯化物含量的关系。研究结果为设计寿命为100年的混凝土桥梁在沿海地区采取有效的腐蚀防护政策提供了依据。 >参考 style =“ text-align:left;”> 1。公共工程研究所,2001年3月,混凝土桥梁的生命周期成本调查-混凝土桥梁的劣化和维护成本,PWRI 3811号技术备忘录,筑波,日本。 style =“ text-align:left;”> 2.。 Virmani,Y. P.和Clemena,G. G.,1998年9月,“防腐混凝土桥梁”,a。华盛顿特区联邦公路管理局FHWA-RD-98-088号报告 style =“ text-align:left;”> 3。 Kessler,R. J.和Powers,R. G.,1987年9月,“对子结构Long Key Bridge的腐蚀评估”,a。佛罗里达交通运输部中期报告。 style =“ text-align:left;”> 4。 Kessler,R. J.和Powers,R. G.,1988年8月,“环氧涂层钢筋键段桥的腐蚀”,门罗县,a。佛罗里达交通运输部报告号88-8A。 style =“ text-align:left;”> 5.。 Pfeifer,D. W.,2000年,target =“ _ blank” title =“ a?使用寿命为100年的高性能混凝土和钢筋,a?” href =“ http://dx.doi.org/10.15554/pcij.05012000.46.54”> a?“具有100年使用寿命的高性能混凝土和钢筋”, PCI Journal,V见2000年5月45日第3期,第46-54页。 style =“ text-align:left;”> 6。麦当劳(D.B.); Pfeifer,D.W .; and Sherman,M. R.,1998年12月,“混凝土中环氧涂层的金属钢筋的腐蚀评估”,a。报告编号FHWA-RD-98-153,华盛顿特区联邦公路管理局,137页 style =“ text-align:left;”> 7。麦当劳(D.B.); Sherman,M.R .; Pfeifer,D.W .;和Virmani,Y. P.,1995年,《不锈钢作为腐蚀防护材料》,a。混凝土国际,1995年5月,第17卷,第5期,第65-70页。 style =“ text-align:left;”> 8。 R. W. Poston; Carrasquillo,R. L .; and Breen,J. E.,1987,target =“ _ blank” title =“ a?后张桥架的耐久性,a?” href =“ http://dx.doi.org/10.14359/1622”> a?后张桥架的耐久性,a? ACI材料杂志,1987年7月至8月,第315-326页。 style =“ text-align:left;”> 9。 Smith,J. L.和Virmani,Y. P.,1996年8月,“桥架中环氧涂层钢筋的性能”,a。华盛顿特区联邦公路管理局FHWARD- 96-092号报告 style =“ text-align:left;”> 10。 Sagues,A. A.等人,1994年5月,“佛罗里达桥梁中环氧涂层钢筋的腐蚀”,a。佛罗里达交通局的最终报告。 style =“ text-align:left;”> 11。公共工程研究所,2000年12月,关于对预应力混凝土桥梁进行最小化维护的研究

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号