...
首页> 外文期刊>Science Advances >Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity
【24h】

Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity

机译:改进的碱基切除修复抑制和噬菌体Mu Gam蛋白可提高C:G-to-T:A碱基编辑效率和产品纯度

获取原文

摘要

We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing—the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product—varies in a target site–dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.
机译:我们最近开发了碱基编辑功能,可以将目标C:G碱基对可编程转换为T:A,而不会诱导双链DNA断裂(DSB),也不需要使用Cas9变异体和胞苷脱氨酶的工程融合物进行同源性定向修复。在过去的一年中,第三代基础编辑器(BE3)和相关技术已被许多研究人员成功地用于各种生物中。基本编辑的产物分布(目标C:G转化为不良副产物与所需T:A产物的混合物的频率)以取决于目标站点的方式变化。我们表征人类细胞中碱基编辑结果的决定因素,并确定不需要的产物的形成取决于尿嘧啶N-糖基化酶(UNG),并且更有可能发生在碱基编辑活动窗口内仅包含单个C的目标位点。我们设计了CDA1-BE3和AID-BE3,它们使用胞苷脱氨酶同源物来提高某些序列的碱基编辑效率。基于这些观察,我们设计了第四代基础编辑器(BE4和SaBE4),将C:G到T:A基础编辑的效率提高了约50%,同时与BE3相比,不需要的副产品的频率降低了一半。将BE3,BE4,SaBE3或SaBE4融合到Gam(一种结合DSB的噬菌体Mu蛋白)可大大减少碱基编辑过程中插入缺失的形成,在大多数情况下降至1.5%以下,并进一步提高了产品纯度。 BE4,SaBE4,BE4-Gam和SaBE4-Gam代表了C:G-to-T:A基础编辑的最新技术,我们建议在将来的工作中使用它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号