...
首页> 外文期刊>Oil & gas science and technology >Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches
【24h】

Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches

机译:超压:原因机制,常规方法和流体力学方法

获取原文
           

摘要

Abnormal fluid pressure regimes are commonly encountered at depth in most sedimentary basins. Relationships between effective vertical stress and porosity have been applied, since 1970 to the Gulf Coast area, to assess the magnitude of overpressures. Positive results have been obtained from seismic and basin-modeling techniques in sand-shale, vertical-stress-dominated tertiary basins, whenever compaction disequilibrium conditions apply. However, overpressures resulting from other and/or additional causes (tectonic stress, hydrocarbon generation, thermal stress, fault-related transfer, hydrofracturing. . . ) cannot be quantitatively assessed using this approach. A hydromechanical approach is then proposed in addition to conventional methods. At any depth, the upper bound fluid pressure is controlled by in situ conditions related to hydrofracturing or fault reactivation. Fluid-driven fracturing implies an episodically open system, under a close to zerominimum effective stress regime. Sound knowledge of present-day tectonic stress regimes allows a direct estimation of minimum stress evolution. A quantitative fluid pressure assessment at depth is therefore possible, as in undrained or/and compartmented geological systems, pressure regimes, whatever their origin, tend to rapidly reach a value close to the minimum principal stress. Therefore, overpressure assessment will be improved, as this methodology can be applied to various geological settings and situations where present-day overpressures originated from other causal mechanisms, very often combined. However, pressure trends in transition zones are more difficult to assess correctly. Additional research on cap rocks and fault seals is therefore required to improve their predictability. In addition to overpressure assessment, the minimum principal stress concept allows a better understanding of petroleum system, as fault-related hydrocarbon dynamic transfers, hydrofractured domains and cap-rock sealing efficiency depend on the subtle interaction, through time, between overpressure and minimum principal stress regimes.
机译:在大多数沉积盆地的深部通常会遇到异常的流体压力状态。自1970年以来,已将有效垂直应力与孔隙率之间的关系应用于墨西哥湾沿岸地区,以评估超压的幅度。只要施加压实不平衡条件,在砂页岩,垂直应力为主的第三盆地中,通过地震和盆地建模技术已经获得了积极的成果。但是,使用这种方法无法定量评估其他和/或其他原因(构造应力,碳氢化合物生成,热应力,与断层有关的转移,水力压裂……)引起的超压。然后,除了常规方法之外,还提出了一种水力机械方法。在任何深度,上限流体压力都由与水力压裂或断层再活化有关的原位条件控制。流体驱动压裂意味着在接近零最小有效应力的情况下,一个渐进的开放系统。对当今构造应力状态的充分了解可以直接估算最小应力演化。因此,可以在深处进行定量的流体压力评估,因为在不排水或/和分隔的地质系统中,无论其起源如何,压力体制都倾向于迅速达到接近最小主应力的值。因此,超压评估将得到改善,因为该方法可以应用于各种地质环境和当前超压源于其他因果机制(通常结合使用)的情况。但是,过渡区的压力趋势更难正确评估。因此,需要对盖岩和断层封闭层进行其他研究,以提高其可预测性。除了超压评估外,最小主应力概念还可以更好地了解石油系统,因为与断层有关的烃动力传递,水力压裂区域和盖层岩石密封效率取决于超压和最小主应力之间的细微相互作用。政权。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号