...
首页> 外文期刊>Results in Physics >Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition
【24h】

Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

机译:微极性泥对滑移边界条件下细菌滑动运动的流变作用

获取原文

摘要

Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.
机译:滑行细菌几乎无处不在。这些生物在系统发育上具有数百种类型,不同的形状和几种运动模式。杆状细菌中滑动运动的一种可能模式是,它们通过在体内产生起伏的波浪来推动自身。几乎没有细菌在鞭毛的帮助下在粘液上的固体表面附近滑动,因此经典的Navier-Stokes方程无法在微观层面上解释粘液的流变学特性。然而,微极性流体动力学为在微观和纳米尺度上模拟细菌物理现象提供了坚实的框架,因此,我们使用微极性流体来表征粘液薄层的流变性及其主要的微旋转作用。还假定粘液和细菌起伏表面之间以及粘液和固体基质之间存在一定程度的打滑。流动方程是在长波长和低雷诺数假设下制定的。获得了流函数和压力梯度的精确表达式。滑行细菌的速度是通过使用改进的牛顿-拉夫森方法数值计算的。还定量了滑移效应和非牛顿煤泥参数对细菌速度和功率的影响。此外,在固定滑翔机时,还以图形方式显示了微极性粘液参数的滑移和流变特性对球形粘液颗粒的速度,微旋转(角速度),每个波长的压力升高,泵浦和捕集现象的影响,并且详细讨论。该研究与新兴的生物燃料电池技术以及细菌生物物理学有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号