首页> 外文期刊>Retina Today >Retina Today - Imaging Options in Retinal Vein Occlusion (April 2018)
【24h】

Retina Today - Imaging Options in Retinal Vein Occlusion (April 2018)

机译:今日视网膜-视网膜静脉阻塞的影像学选择(2018年4月)

获取原文
           

摘要

Retinal vein occlusion (RVO) is the second leading cause of retinal vascular disease, with reported cumulative annual incidence of 1.8% for branch RVO (BRVO) and 0.5% for central RVO (CRVO),1,2 and bilateral or subsequent incidences of 6.4% and 0.9%, respectively.1,3,4 AT A GLANCE • OCT is the gold standard imaging modality in the management of patients with RVO. • Fundus photography and fluorescein angiography are acceptable and helpful alternatives. • Newer imaging methods are promising but should be employed with caution until more data are available. The postulated mechanism of action involves impingement of venules at the shared adventitial sheath by crossing arterioles leading to turbulence, stasis, thrombosis, and occlusion.5,6 Response to anti-VEGF and antiinflammatory agents has empirically demonstrated that inflammatory factors play a more important role in RVO than previously presumed, beyond the obvious ischemia. These processes, seemingly mediated by released VEGF, induce retinal edema, retinal hemorrhages, and ischemia, thereby compromising visual function (Figure 1).7-9 Figure 1. The BRVO seen in this fundus photograph features intraretinal blot hemorrhages and soft exudates in the distribution of the occluded superotemporal vein. Because diabetes, hypertension, hypercoagulable states, and vasculitis are associated with a higher incidence of RVO, cooperation with an internist is advised. History of CRVO in the same or fellow eye, open-angle glaucoma, or retrobulbar external compression, as in thyroid orbitopathy or other orbital masses, also predispose an individual to RVO.10-12 Objectively assessing RVO severity and determining prognosis of the condition depend on imaging studies. All clinical trials in RVO have relied heavily on various imaging modalities to standardize eligibility and treatment monitoring. This article reviews the use of some established imaging modalities in these important clinical trials and looks ahead at some promising new imaging technologies. ESTABLISHED TREATMENT OPTIONS Management of RVO with laser photocoagulation, anti-VEGF agents, and corticosteroids has been well established (Tables 1 and 2).13-29 Laser Photocoagulation The Branch Vein Occlusion Study (BVOS) recommended focal laser photocoagulation for BRVO causing visual acuity of 20/40 or worse and macular edema.13,14 Evidence of center-involving macular edema on fluorescein angiography (FA) was the critical entry criterion. Separately, scatter photocoagulation to the involved segment was found to prevent occurrence of vitreous hemorrhage if neovascularization developed. The Central Vein Occlusion Study (CVOS) reported that panretinal photocoagulation reduced visual loss when 2 or more clock hours of iris neovascularization or more than 10 disc areas of capillary nonperfusion was present, but macular grid photocoagulation did not reduce visual acuity loss caused by macular edema.3,15-18 FA provided the gold standard for eligibility and monitoring of edema and extent of capillary nonperfusion (Figure 2). Figure 2. An 80-year-old woman with diabetes and hypertension presented with decreased visual acuity (20/200) and CRVO in her left eye. Fundus photograph shows the presence of disc edema, venous tortuosity, and diffuse retinal hemorrhages (A). FA of the left eye highlights corresponding areas of disc leakage, vessel wall staining, flame-shaped blocked fluorescein, and diffuse capillary nonperfusion (B). OCT of the macula shows cystoid maculopathy with neurosensory detachment (C). OCT at 1-year follow-up after patient received five intravitreal ranibizumab (Lucentis; Genentech) injections with marked resolution of cystoid changes and neurosensory detachment (D). The patient’s visual acuity at last follow-up visit improved to 20/60. Anti-VEGF Therapy Anti-VEGF agents antagonize the effect of VEGF and generally arrest or even reverse disease progress
机译:视网膜静脉阻塞(RVO)是视网膜血管疾病的第二大诱因,据报道分支RVO(BRVO)的累计年发生率为1.8%,中心RVO(CRVO)的累积年发生率为0.5%,1,2和双侧或以后的发生率为6.4分别为%和0.9%。1、3、4•OCT是RVO患者管理中的黄金标准成像方式。 •眼底照相和荧光素血管造影是可以接受的且有用的替代方法。 •更新的成像方法很有希望,但是在获得更多数据之前应谨慎使用。推测的作用机制包括通过横穿小动脉使小静脉撞击共用的外膜鞘,从而导致湍流,淤滞,血栓形成和闭塞。5,6对抗VEGF和抗炎药的反应经验性地表明,炎症因子起着更重要的作用。在RVO中比以前推测的要好,超出了明显的局部缺血。这些过程看似由释放的VEGF介导,可引起视网膜水肿,视网膜出血和局部缺血,从而损害视觉功能(图1)。7-9图1。在此眼底照片中看到的BRVO具有视网膜内印迹出血和软性渗出物。颞上静脉的分布。由于糖尿病,高血压,高凝状态和血管炎与RVO的发生率较高相关,因此建议与内科医生合作。与甲状腺眶病或其他眼眶包块相同或相同的眼睛,开角型青光眼或球后眼外部压迫中的CRVO病史也容易使患者患RVO.10-12客观评估RVO的严重程度并确定病情的预后取决于在影像学研究上。 RVO中的所有临床试验都严重依赖各种成像方式来标准化资格和治疗监测。本文回顾了在这些重要的临床试验中已使用的某些成像方法,并展望了一些有前途的新成像技术。已建立的治疗方案确立了通过激光光凝,抗VEGF药物和皮质类固醇治疗RVO的方法(表1和表2)。13-29激光光凝分支静脉阻塞研究(BVOS)建议对BRVO进行聚焦激光光凝治疗,以引起视力≥20/40或更严重并伴有黄斑水肿[13,14]。荧光素血管造影(FA)的中心性黄斑水肿证据是关键的进入标准。另外,如果发生新血管形成,则散射光凝结至受累部分可防止玻璃体出血的发生。中央静脉阻塞研究(CVOS)报告说,当存在2个或更多时钟小时虹膜新生血管或存在10个以上的毛细血管非灌注椎间盘区域时,全视网膜光凝可减少视力丧失,但黄斑网格光凝并不能减少由黄斑水肿引起的视力丧失.3,15-18 FA为合格和监测水肿和毛细血管非灌注程度提供了金标准(图2)。图2.一名患有糖尿病和高血压的80岁女性,其左眼视力(20/200)和CRVO降低。眼底照片显示存在椎间盘水肿,静脉曲折和弥漫性视网膜出血(A)。左眼的FA突出显示了椎间盘漏出,血管壁染色,火焰状的荧光素阻塞和弥散性毛细血管非灌注(B)的相应区域。黄斑的OCT显示囊状黄斑病变伴神经感觉脱离(C)。患者接受五次玻璃体内注射兰尼单抗(Lucentis; Genentech)注射后,OCT在1年随访中,具有明显的囊样变化和神经感觉脱离(D)分辨率。上次随访时患者的视力提高到20/60。抗VEGF疗法抗VEGF剂可拮抗VEGF的作用,通常可阻止甚至逆转疾病进展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号