...
首页> 外文期刊>Remote Sensing >Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data
【24h】

Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data

机译:利用地表温度-反照率空间从ASTER数据中分离区域土壤和植被温度

获取原文

摘要

Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing data provided by single view angle observations. Here, we present a land surface temperature and albedo (T-α) space approach combined with the mono-surface energy balance (SEB-1S) model to derive soil and vegetation component temperatures. The T-α space can be established from visible and near infrared (VNIR) and TIR data provided by single view angle observations. This approach separates the soil and vegetation component temperatures from the remotely sensed composite temperatures by incorporating soil wetness iso-lines for defining equivalent soil temperatures; this allows vegetation temperatures to be extracted from the T-α space. This temperature separation methodology was applied to advanced scanning thermal emission and reflection radiometer (ASTER) VNIR and high spatial resolution TIR image data in an artificial oasis area during the entire growing season. Comparisons with ground measurements showed that the T-α space approach produced reliable soil and vegetation component temperatures in the study area. Low root mean square error (RMSE) values of 0.83 K for soil temperatures and 1.64 K for vegetation temperatures, respectively, were obtained, compared to component temperatures measurements from a ground-based thermal camera. These results support the use of soil wetness iso-lines to derive soil surface temperatures. It was also found that the estimated vegetation temperatures were extremely close to the near surface air temperature observations when the landscape is well watered under full vegetation cover. More robust soil and vegetation temperature estimates will improve estimates of soil evaporation and vegetation transpiration, leading to more reliable the monitoring of crop water stress and drought.
机译:非等温像素中的土壤和植被组分温度比复合温度具有更多的物理意义并且更适用。但是,很难从单视角观测提供的热红外(TIR)遥感数据中获得组件温度。在这里,我们提出了结合单表面能量平衡(SEB-1S)模型的土地表面温度和反照率(T-α)空间方法,以得出土壤和植被组成温度。可以从可见光和近红外(VNIR)和TIR数据建立T-α空间,该数据由单视角观测提供。这种方法通过结合土壤湿度等值线来定义等效的土壤温度,从而将土壤和植被的成分温度与遥感的复合温度分开。这样可以从T-α空间提取植被温度。这种温度分离方法已应用于整个生长期的人工绿洲区域中的先进扫描热发射和反射辐射计(ASTER)VNIR和高空间分辨率TIR图像数据。与地面测量结果的比较表明,T-α空间方法在研究区域内产生了可靠的土壤和植被成分温度。与基于地面热像仪的组件温度测量值相比,分别获得了针对土壤温度的低均方根误差(RMSE)值为0.83 K和针对植被温度的均方根误差为1.64K。这些结果支持使用土壤湿度等值线得出土壤表面温度。还发现,当景观在完全植被覆盖的情况下浇水良好时,估计的植被温度非常接近于近地表气温观测值。更可靠的土壤和植被温度估算将改善对土壤蒸发和植被蒸腾的估算,从而使对作物水分胁迫和干旱的监测更加可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号