首页> 外文期刊>Research Ideas and Outcomes >Heteroatom quantum corrals?and nanoplasmonics in?graphene (HeQuCoG)
【24h】

Heteroatom quantum corrals?and nanoplasmonics in?graphene (HeQuCoG)

机译:石墨烯中的杂原子量子构象和纳米等离子体激元(HeQuCoG)

获取原文
       

摘要

The objective of the Heteroatom quantum corrals and nanoplasmonics in graphene?(HeQuCoG) project is to create atomically precise structures made of silicon and phosphorus atoms embedded in the lattice of graphene. This will be achieved by combining proven modeling techniques with sample fabrication via carefully controlled ion implantation, and subsequent manipulation in an atomic resolution scanning transmission electron microscope (STEM). The structures will be computationally designed for interesting nanoplasmonic enhancement and quantum confinement properties, and characterized by electron energy loss spectroscopy mapping in the STEM. The expected outcome is a systematic demonstration of truly atomic-level material design and the creation of freestanding “quantum corral” structures for the first time. The controlled manipulation of matter on the atomic scale has been a long-standing dream of nanotechnology. Pioneering directions towards have already been explored, chiefly with the help of scanning tunneling microscopy. However, compared to the manipulation of surface atoms, graphene heteroatoms have the advantage of being stable at room temperature and even if the sample is taken out of the instrument. Furthermore, the coupling of light to nanostructures via plasmon resonances is an intensively pursued and promising research field, which is awaiting breakthroughs in material design before the field can live up to its expected potential.
机译:石墨烯(HeQuCoG)项目中的杂原子量子核和纳米等离子体激元的目标是创建由嵌入石墨烯晶格中的硅和磷原子组成的原子精确结构。这将通过将经过验证的建模技术与通过精心控制的离子注入进行的样品制造以及随后在原子分辨率扫描透射电子显微镜(STEM)中进行的处理相结合来实现。该结构将通过计算设计,以实现有趣的纳米等离子体增强和量子限制特性,并通过STEM中的电子能量损失谱图进行表征。预期的结果将是系统地演示真正的原子级材料设计,并首次创建独立的“量子畜栏”结构。在原子尺度上对物质的受控操纵一直是纳米技术的长期梦想。主要在扫描隧道显微镜的帮助下,已经探索了开拓性的方向。但是,与操纵表面原子相比,石墨烯杂原子具有在室温下稳定的优势,即使将样品从仪器中取出也是如此。此外,通过等离振子共振将光耦合到纳米结构是一个被广泛追求和有前途的研究领域,在该领域能够发挥其预期潜力之前,正在等待材料设计方面的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号