首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Underlying Mechanisms on Tunable Electronic Structures of Graphene Quantum Dots Doped with Nitrogen and Sulfur Heteroatoms
【24h】

Underlying Mechanisms on Tunable Electronic Structures of Graphene Quantum Dots Doped with Nitrogen and Sulfur Heteroatoms

机译:用氮和硫杂原子掺杂石墨烯量子点的可调谐电子结构的基础机制

获取原文

摘要

Graphene quantum dots (GQDs) are a new class of quantum dots with unique chemical and physical properties, and significant developments have been made on their electronic characteristic structures for wide applications in electronics, energy conversion and storage devices. Doping heteroatoms into graphene nanostructures is an efficient way to tune electronic structures. However, different synthesis methods have resulted in different doping configurations to affect electronic properties and thereby hindered systematically understanding the mechanisms of GQDs doped with heteroatoms. Herein, the electronic mechanism of GQDs doped with N and S was studied by density functional theory (DFT). The formation energies, electronic structures, and electrostatic potentials of the doped GQDs were calculated to reveal effects of different doping types on electronic properties. For the N/S co-doped GQDs, graphitic N and pyridine N were considered to substitute carbon atoms in the plane while the -C-S-C- and -C-SO_2-C- at the edge. The formation energy calculated by DFT indicates that heteroatom doping tends to be doped at the basal plane. And surface doping could increase charge density of carbon atoms connected to nitrogen atoms. The introduction of -C-S-C- into the graphitic N and pyridine N structures reduces the energy difference between the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO). However, the addition of oxidized S into the N-doped structure increases the HOMO-LUMO energy gap. For the electrostatic potential diagram, the introduction of sulfur-containing groups can enhance the charge density around nitrogen, which suggests that heteroatom co-doped GQDs have improved electron transports. Therefore, this work provides valuable information on understanding electronic properties of N/S co-doped GQDs for the applications in nanoelectronic devices and give guidance for developing methods to controllably synthesize GQDs with well-defined and desirable properties towards specific purposes.
机译:石墨烯量子点(GQDS)是一种具有独特的化学和物理性能的新型量子点,并且已经对电子特性结构进行了显着的发展,用于电子,能量转换和存储装置的广泛应用。将杂原子掺杂成石墨烯纳米结构是调谐电子结构的有效方法。然而,不同的合成方法导致不同的掺杂配置,以影响电子性质,从而系统地理解掺杂杂原子的GQD的机制。这里,通过密度泛函理论(DFT)研究了掺杂有N和S的GQD的电子机制。计算掺杂GQD的形成能量,电子结构和静电电位,以揭示不同掺杂类型对电子性质的影响。对于N / S共掺杂GQDS,认为石墨N和吡啶N被认为在边缘处的-C-S-C-和-C-SO_2-C-替换平面中的碳原子。通过DFT计算的形成能量表明杂原子掺杂倾向于在基面上掺杂。表面掺杂可以增加连接到氮原子的碳原子的电荷密度。 -C-S-C-进入石墨N和吡啶N结构的引入降低了最高占用的分子轨道(HOMO)和最低占用的分子轨道(LUMO)之间的能量差。然而,将氧化的S添加到N掺杂结构中增加了同源Lumo能量隙。对于静电电位图,含硫基团的引入可以增强氮气的电荷密度,这表明杂原子共掺杂的GQD具有改善的电子传输。因此,这项工作提供了有关了解N / S共掺杂GQD的电子性质的宝贵信息,用于纳米电子器件中的应用,并为显影方法提供指导,以便可控制地合成GQD,其具有明确定义的和理想的特性朝向特定目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号