首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >Pseudo-Derandomizing Learning and Approximation
【24h】

Pseudo-Derandomizing Learning and Approximation

机译:伪非随机化学习和逼近

获取原文
获取外文期刊封面目录资料

摘要

We continue the study of pseudo-deterministic algorithms initiated by Gat and Goldwasser [Eran Gat and Shafi Goldwasser, 2011]. A pseudo-deterministic algorithm is a probabilistic algorithm which produces a fixed output with high probability. We explore pseudo-determinism in the settings of learning and approximation. Our goal is to simulate known randomized algorithms in these settings by pseudo-deterministic algorithms in a generic fashion - a goal we succinctly term pseudo-derandomization. Learning. In the setting of learning with membership queries, we first show that randomized learning algorithms can be derandomized (resp. pseudo-derandomized) under the standard hardness assumption that E (resp. BPE) requires large Boolean circuits. Thus, despite the fact that learning is an algorithmic task that requires interaction with an oracle, standard hardness assumptions suffice to (pseudo-)derandomize it. We also unconditionally pseudo-derandomize any {quasi-polynomial} time learning algorithm for polynomial size circuits on infinitely many input lengths in sub-exponential time.Next, we establish a generic connection between learning and derandomization in the reverse direction, by showing that deterministic (resp. pseudo-deterministic) learning algorithms for a concept class C imply hitting sets against C that are computable deterministically (resp. pseudo-deterministically). In particular, this suggests a new approach to constructing hitting set generators against AC^0[p] circuits by giving a deterministic learning algorithm for AC^0[p]. Approximation. Turning to approximation, we unconditionally pseudo-derandomize any poly-time randomized approximation scheme for integer-valued functions infinitely often in subexponential time over any samplable distribution on inputs. As a corollary, we get that the (0,1)-Permanent has a fully pseudo-deterministic approximation scheme running in sub-exponential time infinitely often over any samplable distribution on inputs.Finally, we {investigate} the notion of approximate canonization of Boolean circuits. We use a connection between pseudodeterministic learning and approximate canonization to show that if BPE does not have sub-exponential size circuits infinitely often, then there is a pseudo-deterministic approximate canonizer for AC^0[p] computable in quasi-polynomial time.
机译:我们继续研究由Gat和Goldwasser发起的伪确定性算法[Eran Gat和Shafi Goldwasser,2011]。伪确定性算法是一种概率算法,它很可能产生固定输出。我们在学习和近似的环境中探索伪确定性。我们的目标是以通用方式通过伪确定性算法在这些设置中模拟已知的随机算法,这一目标我们简称为伪随机化。学习。在通过成员资格查询进行学习的设置中,我们首先表明,在标准硬度假设下,E(result。BPE)需要大布尔电路,可以对随机学习算法进行随机化(伪伪随机化)。因此,尽管事实上学习是一项需要与甲骨文互动的算法任务,但标准的硬度假设足以(伪)将其随机化。我们还无条件地在子指数时间内无穷多个输入长度上对多项式大小电路的任何{拟多项式}时间学习算法进行了伪去随机化。接下来,通过证明确定性,我们在反向学习和非随机化之间建立了一般联系。概念类C的(伪伪确定性)学习算法意味着可以对C进行按确定性(伪伪确定性)计算的集合。特别地,这提出了一种新的方法,该方法通过给出针对AC ^ 0 [p]的确定性学习算法来构造针对AC ^ 0 [p]电路的命中集生成器。近似。转向逼近,我们无条件地将整数值函数的任何多时间随机逼近方案在输入的任何可简化分布上的次指数时间内无限次地进行伪去随机化。作为推论,我们得到(0,1)-Permanent具有完全伪确定性近似方案,该方案通常在输入的任何可简化分布上的次指数时间内无限地运行。最后,我们{调查}的近似正则化概念布尔电路。我们使用伪确定性学习和近似规范化之间的联系来表明,如果BPE经常没有无限次地具有次指数大小的电路,那么对于拟定多项式时间内可计算的AC ^ 0 [p]就有一个伪确定性近似规范化器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号