...
首页> 外文期刊>FEBS Open Bio >Mutational analysis of the Notch2 negative regulatory region identifies key structural elements for mechanical stability
【24h】

Mutational analysis of the Notch2 negative regulatory region identifies key structural elements for mechanical stability

机译:Notch2负调控区的突变分析确定了机械稳定性的关键结构要素

获取原文

摘要

The Notch signalling pathway is fundamental to cell differentiation in developing and self-renewing tissues. Notch is activated upon ligand-induced conformational change of the Notch negative regulatory region (NRR), unmasking a key proteolytic site (S2) and facilitating downstream events. The favoured model requires endocytosis of a tightly bound ligand to transmit force to the NRR region, sufficient to cause a structural change that exposes the S2 site. We have previously shown, using atomic force microscopy and molecular dynamics simulations, that application of force to the N-terminus of the Notch2 NRR facilitates metalloprotease cleavage at an early stage in the unfolding process. Here, mutations are made within the heterodimerization (HD) domain of the NRR that are known to cause constitutive activation of Notch1 whilst having no effect on the chemical stability of Notch2. Comparison of the mechanical stability and simulated forced unfolding of recombinant Notch2 NRR proteins demonstrates a reduced stability following mutation and identifies two critical structural elements of the NRR in its response to force - the linker region between Lin12-Notch repeats LNRA and LNRB and the @a3 helix within the HD domain - both of which mask the S2 cleavage site prior to Notch activation. In two mutated proteins, the LNRC:HD domain interaction is also reduced in stability. The observed changes to mechanical stability following these HD domain mutations highlight key regions of the Notch2 NRR that are important for mechanical, but not chemical, stability. This research could also help determine the fundamental differences in the NRRs of Notch1 and Notch2.
机译:Notch信号通路是发育中和自我更新组织中细胞分化的基础。 Notch在Notch负调控区(NRR)的配体诱导的构象变化时激活,从而揭示关键的蛋白水解位点(S2)并促进下游事件。理想的模型需要紧密结合的配体的内吞作用以将力传递至NRR区,足以引起暴露S2位点的结构变化。先前我们已经使用原子力显微镜和分子动力学模拟表明,将力施加到Notch2 NRR的N端有助于在展开过程的早期阶段对金属蛋白酶进行切割。在这里,在NRR的异二聚化(HD)域内进行的突变已知会引起Notch1的组成性激活,而对Notch2的化学稳定性没有影响。重组Notch2 NRR蛋白的机械稳定性和模拟强迫解折叠的比较表明,突变后稳定性降低,并确定了NRR对力的响应中的两个关键结构要素-Lin12-Notch重复序列LNRA和LNRB与@ a3之间的连接区HD域中的螺旋结构-两者均在Notch激活之前掩盖了S2切割位点。在两个突变的蛋白质中,LNRC:HD结构域的相互作用也降低了稳定性。在这些HD结构域突变后,观察到的机械稳定性变化突出了Notch2 NRR的关键区域,这些关键区域对于机械而非化学稳定性很重要。这项研究还可以帮助确定Notch1和Notch2的NRR的根本差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号