首页> 外文期刊>NPJ systems biology and applications. >Computer modeling defines the system driving a constant current crucial for homeostasis in the mammalian cochlea by integrating unique ion transports
【24h】

Computer modeling defines the system driving a constant current crucial for homeostasis in the mammalian cochlea by integrating unique ion transports

机译:计算机建模通过集成独特的离子传输定义了驱动恒定电流的系统,该恒定电流对于哺乳动物耳蜗的体内平衡至关重要

获取原文
       

摘要

The cochlear lateral wall—an epithelial-like tissue comprising inner and outer layers—maintains +80?mV in endolymph. This endocochlear potential supports hearing and represents the sum of all membrane potentials across apical and basolateral surfaces of both layers. The apical surfaces are governed by K+ equilibrium potentials. Underlying extracellular and intracellular [K+] is likely controlled by the “circulation current,” which crosses the two layers and unidirectionally flows throughout the cochlea. This idea was conceptually reinforced by our computational model integrating ion channels and transporters; however, contribution of the outer layer’s basolateral surface remains unclear. Recent experiments showed that this basolateral surface transports K+ using Na+, K+-ATPases and an unusual characteristic of greater permeability to Na+ than to other ions. To determine whether and how these machineries are involved in the circulation current, we used an in silico approach. In our updated model, the outer layer’s basolateral surface was provided with only Na+, K+-ATPases, Na+ conductance, and leak conductance. Under normal conditions, the circulation current was assumed to consist of K+ and be driven predominantly by Na+, K+-ATPases. The model replicated the experimentally measured electrochemical properties in all compartments of the lateral wall, and endocochlear potential, under normal conditions and during blocking of Na+, K+-ATPases. Therefore, the circulation current across the outer layer’s basolateral surface depends primarily on the three ion transport mechanisms. During the blockage, the reduced circulation current partially consisted of transiently evoked Na+ flow via the two conductances. This work defines the comprehensive system driving the circulation current.
机译:耳蜗侧壁(包括内层和外层的上皮样组织)的内淋巴维持+80?mV。该耳蜗内电位支持听力并代表跨两层的顶表面和基底外侧表面的所有膜电位的总和。顶端表面受K + 平衡势的支配。潜在的细胞外和细胞内[K + ]可能受“循环电流”的控制,该“循环电流”穿过两层并单方向流过整个耳蜗。我们集成了离子通道和转运蛋白的计算模型从概念上加强了这种想法。但是,外层基底外侧表面的贡献仍不清楚。最近的实验表明,该基底外侧表面利用Na + ,K + -ATPases转运K + ,并具有对Na + 而不是其他离子。为了确定这些机械是否以及如何参与循环电流,我们使用了计算机方法。在我们更新的模型中,外层的基底外侧表面仅提供Na + ,K + -ATPase,Na + 电导和渗漏电导。在正常条件下,假定循环电流由K + 组成,并且主要由Na + ,K + -ATPases驱动。该模型在正常条件下以及在Na + ,K + -ATPase阻断过程中,在侧壁的所有隔室和耳蜗内电位复制了实验测量的电化学性能。因此,跨外层基底外侧表面的循环电流主要取决于三种离子传输机制。在阻塞期间,减少的循环电流部分由通过两个电导引起的Na + 瞬态诱发的流动组成。这项工作定义了驱动循环电流的综合系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号