首页> 外文期刊>Nuclear Materials and Energy >Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents
【24h】

Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents

机译:磁场和电流作用下液态金属表面波阻尼的研究

获取原文
           

摘要

Experiments and predictions of surface wave damping in liquid metal due to a surface aligned magnetic field and externally regulatedj?×?Bforce are presented. Fast-flowing, liquid-metal plasma facing components (LM-PFCs) are a proposed alternative to solid PFCs that are unable to handle the high heat flux, thermal stresses, and radiation damage in a tokamak. The significant technical challenges associated with LM-PFCs compared to solid PFCs are justified by greater heat flux management, self-healing properties, and reduced particle recycling. However, undesirable engineering challenges such as evaporation and splashing of the liquid metal introduce excessive impurities into the plasma and degrade plasma performance. Evaporation may be avoided through high-speed flow that limits temperature rise of the liquid metal by reducing heat flux exposure time, but as flow speed increases the surface may become more turbulent and prone to splashing and uneven surfaces. Wave damping is one mechanism that reduces surface disturbance and thus the chances of liquid metal impurity introduction into the plasma. Experiments on the Liquid Metal eXperiment Upgrade (LMX-U) examined damping under the influence of transverse magnetic fields and vertically directed Lorentz force.
机译:提出了由于表面对准的磁场和外部调节的dj?×?Bforce引起的液态金属表面波阻尼的实验和预测。快速流动的面向液态金属等离子体的部件(LM-PFC)是无法在托卡马克中处理高热通量,热应力和辐射损伤的固体PFC的替代方案。与更高的热通量管理,自愈特性和减少的颗粒回收相比,与固态PFC相比,与LM-PFCs相关的重大技术挑战是合理的。然而,诸如液态金属的蒸发和飞溅之类的不希望的工程挑战将过多的杂质引入等离子体中并降低等离子体性能。可以通过减少热通量暴露时间来限制液态金属的温度上升的高速流动来避免蒸发,但是随着流动速度的增加,表面可能会变得更湍流并易于飞溅和不平坦的表面。波动阻尼是一种减少表面扰动并因此减少液态金属杂质引入等离子体的机会的机制。液态金属性能升级(LMX-U)的实验研究了在横向磁场和垂直方向的洛伦兹力的影响下的阻尼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号