...
首页> 外文期刊>New journal of physics >Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1?x?y /InSb quantum wells
【24h】

Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1?x?y /InSb quantum wells

机译:InN x Bi y Sb1?x?y / InSb量子阱中的量子自旋霍尔效应和拓扑相变

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in /InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.
机译:量子自旋霍尔(QSH)效应,物质的基本新量子态和拓扑相变是一种电子材料的特征,通常被称为拓扑绝缘体(TIs)。 TI的体带隙与普通绝缘体相似,但具有无间隙的导电边缘态,在拓扑上受到保护。这些边缘状态通过时间反转对称性得到促进,并且对于非磁性杂质散射具有鲁棒性。最近,随着TI在新的电子学,自旋电子学和量子计算设备中发现了应用,寻求具有非平凡的拓扑状态的新材料的研究引起了极大的研究兴趣。在这里,我们提出并证明了可以在/ InSb半导体量子阱(QWs)中实现QSH效应和拓扑相变的概念验证。在InSb中同时掺入氮和铋有助于降低带隙,同时诱导相反种类的应变,从而获得有利于晶格生长的近晶格匹配。带隙的相位图显示,随着我们增加QW厚度,在临界厚度处,电子能带结构从正常类型转换为反向类型。我们通过使用能带结构,波函数的边沿局部分布和边沿状态自旋动量锁定现象来演示拓扑保护的边沿状态,从而证实了这种过渡是传统绝缘体和具有QSH效应的TI之间的拓扑相变。非零电导,尽管费米能量位于带隙窗口中,但在零模式下,Landau能级的交越点表明在没有任何磁场和存在大Rashba自旋分裂的情况下拓扑带反转用于TI中的自旋操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号