首页> 外文期刊>Microbial Cell Factories >Construction of an organelle-like nanodevice via supramolecular self-assembly for robust biocatalysts
【24h】

Construction of an organelle-like nanodevice via supramolecular self-assembly for robust biocatalysts

机译:通过超分子自组装技术构建细胞器样纳米器件,用于制备坚固的生物催化剂

获取原文
           

摘要

When using the microbial cell factories for green manufacturing, several important issues need to be addressed such as how to maintain the stability of biocatalysts used in the bioprocess and how to improve the synthetic efficiency of the biological system. One strategy widely used during natural evolution is the creation of organelles which can be used for regional control. This kind of compartmentalization strategy has inspired the design of artificial organelle-like nanodevice for synthetic biology and “green chemistry”. Mimicking the natural concept of functional compartments, here we show that the engineered thermostable ketohydroxyglutarate aldolase from Thermotoga maritima could be developed as a general platform for nanoreactor design via supramolecular self-assembly. An industrial biocatalyst-(+)-γ-lactamase was selected as a model catalyst and successful encapsulated in the nanoreactor with high copies. These nanomaterials could easily be synthesized by Escherichia coli by heterologous expression and subsequently self-assembles into the target organelle-like nanoreactors both in vivo and in vitro. By probing their structural characteristics via transmission electronic microscopy and their catalytic activity under diverse conditions, we proved that these nanoreactors could confer a significant benefit to the cargo proteins. The encapsulated protein exhibits significantly improved stability under conditions such as in the presence of organic solvent or proteases, and shows better substrate tolerance than free enzyme. Our biodesign strategy provides new methods to develop new catalytically active protein-nanoreactors and could easily be applied into other biocatalysts. These artificial organelles could have widely application in sustainable catalysis, synthetic biology and could significantly improve the performance of microbial cell factories.
机译:当使用微生物细胞工厂进行绿色制造时,需要解决几个重要问题,例如如何保持生物过程中使用的生物催化剂的稳定性以及如何提高生物系统的合成效率。在自然进化过程中广泛使用的一种策略是创建可用于区域控制的细胞器。这种区隔策略激发了合成合成生物学和“绿色化学”的类人造细胞器纳米装置的设计灵感。模仿功能隔室的自然概念,在此我们表明,可以通过超分子自组装将来自马氏热球菌的热稳定酮羟基戊二酸羟醛缩醛醛缩醛酶开发为纳米反应器设计的通用平台。选择工业生物催化剂-(+)-γ-内酰胺酶作为模型催化剂,并成功地以高拷贝率将其包封在纳米反应器中。这些纳米材料可以很容易地由大肠杆菌通过异源表达合成,然后在体内和体外自组装成靶细胞器样纳米反应器。通过透射电子显微镜探究它们的结构特征及其在不同条件下的催化活性,我们证明了这些纳米反应器可以为货物蛋白质带来重大利益。包封的蛋白质在诸如存在有机溶剂或蛋白酶的条件下显示出显着改善的稳定性,并且显示出比游离酶更好的底物耐受性。我们的生物设计策略提供了开发新的催化活性蛋白纳米反应器的新方法,并且可以轻松地应用于其他生物催化剂。这些人工细胞器可以在可持续催化,合成生物学中广泛应用,并且可以显着提高微生物细胞工厂的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号