首页> 外文学位 >Interaction and self-assembly of nanoparticles for biomedical, nanodevice, and material applications.
【24h】

Interaction and self-assembly of nanoparticles for biomedical, nanodevice, and material applications.

机译:用于生物医学,纳米装置和材料应用的纳米颗粒的相互作用和自组装。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this thesis is to investigate the use of nanoparticles as a means of self-assembly into target structures and as candidates for a variety of applications such as advanced materials, nanodevices, and drug delivery systems. Materials with a well-organized distribution and an orientation provide superior properties that cannot be achieved by the current uniformly or randomly dispersed nanocomposites. An approach to rigorously calculate the driving force for core-shell nanoparticles, taking into account the thermal motion, may suggest a significant degree of the experimental control and contribute to materialization of the distinguished properties. Electrostatic interactions also demonstrate that organizing different nanoparticles systematically into ordered binary superlattices can lead to functional materials. The work elucidates how parameters including permittivity, volume fraction, particle size, and the frequency of the field can be utilized to control the morphology of the superlattice structures. The study explores a wide range of superlattices from functional gradient columns to an alternating chain-network. Poly (amidoamine) dendrimer nanoparticles have been employed extensively in biomedical applications such as drug delivery systems. They disrupt cell membranes and allow the transportation of agent materials into cells. The results of a three dimensional phase field model demonstrate that an amine-terminated G7 dendrimer, which has positive charges on the surface, causes a hole in the membrane. The molecules removed from the membrane encircle the dendrimer and form a dendrimer-filled membrane vesicle. This behavior is significantly reduced for smaller dendrimers. An acetamide-terminated dendrimer, which has a neutral charge, does not induce a hole effectively. Relatively larger particles, such as liquid droplets, also have diverse applications such as 'lab-on-a-chip' systems for biomedical diagnostics. A phase field model, combining the thermodynamics and hydrodynamics, predicts a dynamic motion of a droplet on designed electrodes, which is an important factor for designing devices. Furthermore, it predicts the instability occurrence at a high field strength, which is observed from experiments. A parametric study, combined with a stability analysis, shows a tendency of the instability to depend on the surface energy and the strength of the applied field.
机译:本论文的目的是研究纳米颗粒作为自组装成靶结构的手段以及作为多种应用(例如先进材料,纳米装置和药物递送系统)的候选者的用途。具有良好组织的分布和方向的材料提供了目前的均匀或随机分散的纳米复合材料无法实现的优异性能。考虑到热运动,一种精确计算核-壳纳米颗粒驱动力的方法可能会建议进行很大程度的实验控制,并有助于实现卓越性能。静电相互作用还表明,将不同的纳米粒子系统地组织成有序的二元超晶格可以导致功能材料。这项工作阐明了如何使用包括介电常数,体积分数,粒径和电场频率在内的参数来控制超晶格结构的形态。该研究探索了从功能梯度柱到交替链网络的各种超晶格。聚(酰胺基胺)树状聚合物纳米颗粒已广泛用于生物医学应用中,例如药物递送系统。它们破坏细胞膜并允许将试剂物质运输到细胞中。三维相场模型的结果表明,表面带有正电荷的胺封端的G7树状大分子会在膜上形成孔。从膜上除去的分子环绕树枝状聚合物并形成充满树枝状聚合物的膜囊泡。对于较小的树枝状聚合物,此行为显着降低。具有中性电荷的乙酰胺封端的树枝状聚合物不能有效地诱发空穴。相对较大的颗粒(例如液滴)也具有多种应用,例如用于生物医学诊断的“芯片实验室”系统。相场模型结合了热力学和流体力学,可预测液滴在设计电极上的动态运动,这是设计设备的重要因素。此外,它可以预测从实验中观察到的高场强下的不稳定性。参数研究与稳定性分析相结合,显示出不稳定性的趋势取决于表面能和所施加场的强度。

著录项

  • 作者

    Park, Jong Hyun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号