首页> 外文期刊>Microbial Cell Factories >Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
【24h】

Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution

机译:利用适应性实验室进化技术产生离子液体耐受性的平台应变

获取原文
           

摘要

There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptive laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C4C1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40?days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C2C1Im][OAc]. The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.
机译:需要用可持续的原料代替石油来源的化学产品。某些生物质原料可以作为丰富,多样且可再生的资源来满足这一需求。特定的离子液体(ILs)在此过程中起着有希望的作用,因为它们可以有效地释放可发酵的碳水化合物,因此有望用于化学预处理和基于植物的生物质原料的分解。但是,最有效的预处理IL对生物系统(例如微生物发酵)具有高毒性,并阻碍了从IL处理过的生物质获得的发酵糖的后续生物处理。为了产生能够耐受处理过的原料中存在的残留ILs的菌株,开发了一种耐受性适应性实验室进化(TALE)方法,并在存在两种不同离子性离子的情况下,用于改善两种不同大肠杆菌菌株DH1和K-12 MG1655的生长。液体,乙酸1-乙基-3-甲基咪唑鎓盐([C2C1Im] [OAc])和1-丁基-3-甲基咪唑鎓氯化物([C4C1Im] Cl)。对于大肠杆菌的多个平行复制种群,将细胞重复传代以选择大约40天的过程以提高适应性。筛选克隆分离株,并对表现最好的分离株进行全基因组测序。耐受性克隆中最普遍的突变发生在转运过程中,该转运过程与多药外排泵mdtJI和未知转运蛋白yhdP的功能有关。其他突变在转录调控和核苷酸生物合成等过程中得到了丰富。最后,将性能最佳的菌株与先前鉴定的耐性菌株进行比较,显示出对不同IL和培养基组合的耐受性(即交叉耐受性)优异的性能,其强劲的生长速度为8.5%(w / v),可检测的生长速度高达11.9% (w / v)[C2C1Im] [OAc]。因此,所产生的菌株代表了利用IL处理的可再生底物可用于生物生产的性能最好的平台菌株,TALE方法在克服底物毒性的一般问题方面非常成功,并有望用于耐受性工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号