...
首页> 外文期刊>Microbial Cell Factories >Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase
【24h】

Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase

机译:使用展示微小纤维素酶和β-葡萄糖苷酶的酵母菌联盟生产纤维素乙醇

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic bioethanol. In this study, we developed a cellulolytic yeast consortium for CBP, based on the surface display of cellulosome structure, mimicking the cellulolytic bacterium, Clostridium thermocellum. Results We designed a cellulolytic yeast consortium composed of four different yeast strains capable of either displaying a scaffoldin (mini CipA) containing three cohesin domains derived from C. thermocellum, or secreting one of the three types of cellulases, C. thermocellum CelA (endoglucanase) containing its own dockerin, Trichoderma reesei CBHII (exoglucanase) fused with an exogenous dockerin from C. thermocellum, or Aspergillus aculeatus BGLI (β-glucosidase). The secreted dockerin-containing enzymes, CelA and CBHI, were randomly assembled to the surface-displayed mini CipA via cohesin-dockerin interactions. On the other hand, BGLI was independently assembled to the cell surface since we newly found that it already has a cell adhesion characteristic. We optimized the cellulosome activity and ethanol production by controlling the combination ratio among the four yeast strains. A mixture of cells with the optimized mini CipA:CelA:CBHII:BGLI ratio of 2:3:3:0.53 produced 1.80 g/l ethanol after 94 h, indicating about 20% increase compared with a consortium composed of an equal amount of each cell type (1.48 g/l). Conclusions We produced cellulosic ethanol using a cellulolytic yeast consortium, which is composed of cells displaying mini cellulosomes generated via random assembly of CelA and CBHII to a mini CipA, and cells displaying BGLI independently. One of the advantages of this system is that ethanol production can be easily optimized by simply changing the combination ratio of the different populations. In addition, there is no limitation on the number of enzymes to be incorporated into this cellulosome structure. Not only cellulases used in this study, but also any other enzymes, including cellulases and hemicellulases, could be applied just by fusing dockerin domains to the enzymes.
机译:背景技术纤维素生物质被认为是化石燃料的一种有前途的替代品,但是其顽强的特性和纤维素酶的高成本是利用这种材料的主要障碍。合并生物处理(CBP),将纤维素酶的生产,糖化和发酵合并为一个步骤,已被提出为降低纤维素生物乙醇生产成本的最有效方法。在这项研究中,我们基于纤维素体结构的表面展示,模仿了纤维素分解细菌热纤梭菌,开发了一种用于CBP的纤维素分解酵母财团。结果我们设计了由四个不同酵母菌株组成的纤维素分解酵母菌群,它们能够展示含有来自热纤梭菌的三个粘附素域的支架蛋白(微型CipA),或分泌三种类型的纤维素酶,即热纤梭菌CelA(内切葡聚糖酶)。包含其自己的码头蛋白,里氏木霉CBHII(外切葡聚糖酶)与来自热纤梭菌的外源码头蛋白或刺曲霉BGLI(β-葡萄糖苷酶)融合。通过粘附素-dockerin相互作用,将分泌的含有dockerin的酶CelA和CBHI随机组装到表面展示的微型CipA。另一方面,由于我们新发现BGLI已经具有细胞粘附特性,因此它是独立组装到细胞表面的。通过控制四种酵母菌株之间的组合比例,我们优化了纤维素酶的活性和乙醇的生产。最优化的最小CipA:CelA:CBHII:BGLI比为2:3:3:0.53的细胞混合物在94小时后产生1.80 g / l乙醇,与同等组成的财团相比,增加了约20%电池类型(1.48 g / l)。结论我们使用纤维素分解酵母菌联盟生产了纤维素乙醇,该联盟由展示通过将CelA和CBHII随机组装成mini CipA生成的展示微型纤维素小体的细胞和独立展示BGLI的细胞组成。该系统的优点之一是,只需更改不同人群的混合比例,即可轻松优化乙醇生产。另外,对掺入该纤维素体结构的酶的数量没有限制。仅通过将dockerin结构域融合到酶中,不仅本研究中使用的纤维素酶,而且包括纤维素酶和半纤维素酶在内的任何其他酶都可以应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号