首页> 外文期刊>Molecular Plant-Microbe Interactions >Ethylene Sensing and Gene Activation in Botrytis cinerea: A Missing Link in Ethylene Regulation of Fungus-Plant Interactions?
【24h】

Ethylene Sensing and Gene Activation in Botrytis cinerea: A Missing Link in Ethylene Regulation of Fungus-Plant Interactions?

机译:灰葡萄孢中的乙烯传感和基因激活:真菌与植物相互作用的乙烯调控中的缺失环节?

获取原文
           

摘要

Ethylene production by infected plants is an early resistance response leading to activation of plant defense pathways. However, plant pathogens also are capable of producing ethylene, and ethylene might have an effect not only on the plant but on the pathogen as well. Therefore, ethylene may play a dual role in fungus—plant interactions by affecting the plant as well as the pathogen. To address this question, we studied the effects of ethylene on the gray mold fungus Botrytis cinerea and the disease it causes on Nicotiana benthamiana plants. Exposure of B. cinerea to ethylene inhibited mycelium growth in vitro and caused transcriptional changes in a large number of fungal genes. A screen of fungal signaling mutants revealed a Gα null mutant (Δbcg1) which was ethylene insensitive, overproduced ethylene in vitro, and showed considerable transcriptional changes in response to ethylene compared with the wild type. Aminoethoxyvinylglycine (AVG)-treated, ethylene-nonproducing N. benthamiana plants developed much larger necroses than ethylene-producing plants, whereas addition of ethylene to AVG-treated leaves restricted disease spreading. Ethylene also affected fungal gene expression in planta. Expression of a putative pathogenicity fungal gene, bcspl1, was enhanced 24 h after inoculation in ethylene-producing plants but only 48 h after inoculation in ethylene-nonproducing plants. Our results show that the responses of B. cinerea to ethylene are partly mediated by a G protein signaling pathway, and that ethylene-induced plant resistance might involve effects of plant ethylene on both the plant and the fungus.
机译:被感染植物产生的乙烯是一种早期抗药性反应,可激活植物防御途径。但是,植物病原体也能够产生乙烯,乙烯不仅可能对植物产生影响,而且还可能对病原体产生影响。因此,乙烯可能通过影响植物和病原体而在真菌-植物相互作用中起双重作用。为了解决这个问题,我们研究了乙烯对灰霉菌灰葡萄孢的影响及其对本氏烟草植物造成的疾病。灰质双歧杆菌暴露于乙烯会在体外抑制菌丝体生长,并导致大量真菌基因的转录变化。真菌信号突变体的筛选显示了一个Gα无效突变体(Δbcg1),该突变体对乙烯不敏感,在体外生产过量的乙烯,与野生型相比,对乙烯的响应显示出可观的转录变化。氨基乙氧基乙烯基甘氨酸(AVG)处理的,不生产乙烯的本氏烟草植物比坏死的乙烯植物产生更大的坏死,而向AVG处理的叶子中添加乙烯限制了疾病的传播。乙烯还影响植物中真菌基因的表达。在产乙烯的植物中接种后24 h,假定的致病性真菌基因bcspl1的表达增强,而在不产乙烯的植物中接种后,仅48 h的表达增强。我们的结果表明,灰葡萄双歧杆菌对乙烯的反应部分地由G蛋白信号传导途径介导,并且乙烯诱导的植物抗性可能涉及植物乙烯对植物和真菌的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号