首页> 外文期刊>Molecular biology of the cell >Evolutionary cell biology: functional insight from “endless forms most beautiful”
【24h】

Evolutionary cell biology: functional insight from “endless forms most beautiful”

机译:进化细胞生物学:“无尽形式最美丽”的功能洞察力

获取原文
           

摘要

In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective , we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. The field of cell biology has made tremendous strides in understanding eukaryotic cells, especially animals and yeast. Concurrently, evolutionary biology has opened up a window to the origins of our species and the genes that define us. Though these fields have intersected conceptually for decades, a recent movement is explicitly uniting these two fields into the discipline of evolutionary cell biology with great success ( Brodsky et al. , 2012 ; Lynch et al. , 2014 ) and, we argue here, potentially an even greater future. One drive behind this movement is to harness the comparative approach of evolutionary biology and apply it to questions of cellular origins and cellular function. This approach has yielded beautiful insight into animal cellular function from mitotic spindle dynamics ( Helmke and Heald, 2014 ) to glycosylation machinery ( Varki, 2006 ). However, expanding the scope of investigation to organisms beyond fungi and animals to span eukaryotic diversity has allowed for discoveries that force us to adjust some fundamental ideas of how eukaryotic organelles work, and why.
机译:在动物和真菌模型生物中,已经对细胞生物学的复杂性进行了详尽的分析,关于这些生物如何在细胞水平上起作用的信息也很多。但是,细胞生物学家通常使用的模型生物仅包含真核细胞形式真正多样性的一小部分。在这些更遥远的世系中观察到的发散细胞过程在一般科学界仍是未知的。尽管这些生物相对晦涩难懂,但对它们在真核生物多样性中的比较研究却对我们对所有物种的基本细胞生物学的理解产生了深远的影响,并揭示了先前观察到的细胞过程的演变和起源。在本《观点》中,我们将讨论在真核树上发现的细胞生物学的复杂性,以及三个具体的例子,这些例子说明了不同细胞生物学的研究改变了我们对线粒体,质体和膜运输的关键功能方面的理解。细胞生物学领域在了解真核细胞,尤其是动物和酵母菌方面取得了长足的进步。同时,进化生物学为我们物种的起源和定义我们的基因打开了一个窗口。尽管这些领域在概念上已经相交了数十年,但最近的运动明确地将这两个领域联合到了进化细胞生物学学科中,并取得了巨大的成功(Brodsky等,2012; Lynch等,2014),并且我们在这里争论更大的未来这一运动的推动力是利用进化生物学的比较方法,并将其应用于细胞起源和细胞功能的问题。从有丝分裂纺锤体动力学(Helmke和Heald,2014年)到糖基化机制(Varki,2006年),这种方法已经对动物细胞功能产生了深刻的了解。但是,将研究范围扩大到真菌和动物以外的生物,以跨越真核生物多样性,这一发现使得我们不得不调整一些有关真核细胞器工作方式及其原因的基本观念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号