...
首页> 外文期刊>Microbiology >Mechanisms of extracellular S0 globule production and degradation in Chlorobaculumtepidum via dynamic cell–globule interactions
【24h】

Mechanisms of extracellular S0 globule production and degradation in Chlorobaculumtepidum via dynamic cell–globule interactions

机译:通过动态细胞-小球相互作用在球藻中细胞外S0小球产生和降解的机制

获取原文
           

摘要

The Chlorobiales are anoxygenic phototrophs that produce solid, extracellular elemental sulfur globules as an intermediate step in the oxidation of sulfide to sulfate. These organisms must export sulfur while preventing cell encrustation during S0 globule formation; during globule degradation they must find and mobilize the sulfur for intracellular oxidation to sulfate. To understand how the Chlorobiales address these challenges, we characterized the spatial relationships and physical dynamics of Chlorobaculum tepidum cells and S0 globules by light and electron microscopy. Cba. tepidum commonly formed globules at a distance from cells. Soluble polysulfides detected during globule production may allow for remote nucleation of globules. Polysulfides were also detected during globule degradation, probably produced as an intermediate of sulfur oxidation by attached cells. Polysulfides could feed unattached cells, which made up over 80% of the population and had comparable growth rates to attached cells. Given that S0 is formed remotely from cells, there is a question as to how cells are able to move toward S0 in order to attach. Time-lapse microscopy shows that Cba. tepidum is in fact capable of twitching motility, a finding supported by the presence of genes encoding type IV pili. Our results show how Cba. tepidum is able to avoid mineral encrustation and benefit from globule degradation even when not attached. In the environment, Cba. tepidum may also benefit from soluble sulfur species produced by other sulfur-oxidizing or sulfur-reducing bacteria as these organisms interact with its biogenic S0 globules.
机译:绿藻是产氧的营养养分,产生固态的细胞外元素硫小球,作为硫化物氧化成硫酸盐的中间步骤。这些生物必须输出硫,同时防止S0小球形成过程中的结壳。在小球降解过程中,它们必须找到并动员硫以将其细胞内氧化为硫酸盐。为了了解叶绿藻如何应对这些挑战,我们通过光镜和电子显微镜表征了温叶绿藻细胞和SO球的空间关系和物理动力学。 CBA。圆锥状菌通常在距细胞一定距离处形成小球。在小球生产过程中检测到的可溶性多硫化物可允许小球的远距离成核。在球状降解过程中也检测到多硫化物,可能是附着细胞氧化硫的中间产物。多硫化物可以喂食未附着的细胞,该细胞占人口的80%以上,并且生长速度与附着的细胞相当。假设S0远离单元格形成,则存在一个问题,即单元格如何能够朝S0移动以进行附着。延时显微镜显示Cba。实际上,铁皮棉能够抽动运动能力,这一发现得到了编码IV型菌毛的基因的支持。我们的结果显示了Cba的效果。 tepidum能够避免矿物结垢,即使未附着也能从小球降解中受益。在环境中,Cba。当这些生物与其生源的SO球相互作用时,铁锈菌也可能受益于其他硫氧化或硫还原细菌产生的可溶性硫物质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号