首页> 外文期刊>Frontiers in Human Neuroscience >Executive Functions and Performance Variability Measured by Event-Related Potentials to Understand the Neural Bases of Perceptual Decision-Making
【24h】

Executive Functions and Performance Variability Measured by Event-Related Potentials to Understand the Neural Bases of Perceptual Decision-Making

机译:通过事件相关电位来衡量执行功能和绩效的可变性,以了解感知决策的神经基础

获取原文
           

摘要

Deciding between different choices: neurocognitive factors of decision-making and response variability Perceptual decision-making tasks usually require subjects to recognize stimulus categories and select between different response alternatives. For example, in Go/No-go tasks, one has to respond to target stimuli and withhold responding to non-target stimuli. Accomplishing even just a single trial of such a task needs a complex sequence of functions (most of them executive) consisting, for example, in motor readiness, sustained attention, sensory processing, inhibitory control, conflict monitoring, stimulus-response mapping, context updating and, if any, error detection and awareness. In this context, the motor response reflects the behavioral outcome of the fast and proper interaction of the above-mentioned processes, and the response consistency (or variability) is often adopted as index of executive functioning.Nowadays, one challenge of the cognitive neuroscience is to understand how executive functions allow to make decisions. In fact, understanding decisional processes, and reasons of decision failure, would be helpful to clarify the executive dysfunctions of clinical conditions such as obsessive compulsive disorders, impulsivity, and addictions (typically intended as a failure of inhibition; Chamberlain et al., 2005 ; Crews and Boettiger, 2009 ; álvarez-Moya et al., 2011 ), as well as success in real-life tasks (e.g., car driving; Bunce et al., 2012 ) and goal-directed behaviors (e.g., complying with diet schedules; Jahanshahi et al., 2015 ). In this context, the response variability reflects a behavioral index of efficiency of frontal cognitive control (Bellgrove et al., 2004 ), and this association was suggested since the first half of the twentieth century, when Head ( 1926 , p. 145) reported that “ an inconsistent response is one of the most striking consequences of lesions to the cerebral cortex.” More recently, consistent literature indicated response variability as an indirect index of top down control (Tamm et al., 2012 ), executive functioning (Swick et al., 2013 ), neurological (Segalowitz et al., 1997 ; Hultsch et al., 2000 ), and psychiatric conditions (Barkley et al., 1992 ; Vinogradov et al., 1998 ; Leth-Steensen et al., 2000 ), and frontal lobes integrity (Bunce et al., 2007 ; Walhovd and Fjell, 2007 ; L?vdén et al., 2013 ). The frontal cortex is in fact considered as the main region supporting the executive functions and behavioral variability (Stuss et al., 2003 ), as revealed by the poor response consistency and accuracy of frontal patients performing a decision-making task (Arnot, 1952 ; Stuss et al., 1999 , 2003 ; Picton et al., 2007 ).Even though it is evident the relationship between executive functioning and performance variability at group level (e.g., in the comparison between high- and low-level athletes in sport; Vestberg et al., 2012 ), it is less known the mediating role of response variability at intra-individual level. Also, it is still not clear the mediating role of PFC activity in the intra-individual variability because of contrasting results of neuroimaging studies: in fact, two studies reported a greater dorsolateral PFC (DLPFC) activation associated with high intra-individual variability (Bellgrove et al., 2004 ; Simmonds et al., 2007 ), while Weissman et al. ( 2006 ) reported reduced pre-stimulus activity of the right DLPFC in the less consistent trials. In other words, depending on the main findings, neuroimaging literature interpreted the high individual variability as the consequence of the greater need of top-down executive control (enhanced PFC activation), or in terms of lapses in attention (reduced PFC activation). ERPs and executive functions: state of the art and main limitations Identification of neurophysiological correlates of executive functioning requires to investigate different cognitive abilities, which in part depend on the experimental paradigm: for example, in Stroop or sustained attention tasks (Demeter and Woldorff, 2016 ), voluntary selective attention would be more stressed than Go/No-go tasks in which accumulation of sensory evidence would be determinant, or oddball tasks where decision making in effected by expectancy, or stop-signal tasks in which the so-called “reactive inhibition” is often required (for a review see Jahanshahi et al., 2015 ). It is also relevant to note that decisional processes work in a narrow temporal window, such as the time needed to perform a single trial in a speeded decision-making task. This constraint requires the researchers to adopt a technique with adequate temporal resolution to carry out their own investigations: this means that neuroimaging studies may not be the most suitable to investigate the fast temporal succession of the decisional processes. Moreover, as also suggested by Bogacz et al. ( 2010 ), the duration of the decision processes can affect the amplitude of the BOLD signal, therefore funct
机译:在不同的选择之间做出决定:决策和反应变异性的神经认知因素知觉决策任务通常要求受试者识别刺激类别并在不同的反应选择之间进行选择。例如,在执行/不执行任务中,必须对目标刺激做出响应,而对非目标刺激保持响应。即使仅完成一项任务的一次试验,也需要一系列复杂的功能(其中大多数是执行功能),例如,运动准备,持续关注,感觉处理,抑制控制,冲突监控,刺激反应映射,上下文更新以及(如果有)错误检测和感知。在这种情况下,运动反应反映了上述过程的快速和适当相互作用的行为结果,并且反应一致性(或变异性)通常被用作执行功能的指标。如今,认知神经科学的挑战之一是了解执行职能如何做出决策。实际上,了解决策过程和决策失败的原因将有助于阐明临床状况的执行功能障碍,例如强迫症,冲动性和成瘾性(通常是抑制的失败; Chamberlain等人,2005年; Crews和Boettiger,2009;ávarz-Moya等,2011),以及在现实生活中的成功(例如,汽车驾驶; Bunce等,2012)和目标导向的行为(例如,遵守饮食计划) ; Jahanshahi等人,2015年)。在这种情况下,反应的变异性反映了额叶认知控制效率的行为指标(Bellgrove et al。,2004),并且这种关联自二十世纪上半叶(Head(1926,p。145))报道以来就被提出。 “不一致的反应是病变对大脑皮层最显着的后果之一。”最近,一致的文献指出,反应变异性是自上而下控制的间接指标(Tamm等,2012),执行功能(Swick等,2013),神经系统学(Segalowitz等,1997; Hultsch等,1997)。 (2000),精神病(Barkley等,1992; Vinogradov等,1998; Leth-Steensen等,2000)和额叶完整性(Bunce等,2007; Walhovd和Fjell,2007; L) ?vdén等人,2013年)。实际上,额叶皮层被认为是支持执行功能和行为变异性的主要区域(Stuss等,2003),这是因为额叶患者执行决策任务的反应一致性和准确性差(Arnot,1952; 1991)。 Stuss等人,1999年,2003年; Picton等人,2007年)。尽管很明显在小组水平上执行功能与绩效差异之间存在关联(例如,在运动中高水平和低水平运动员之间的比较; Vestberg et al。,2012),人们对个体内部反应变异性的介导作用知之甚少。同样,由于神经影像学研究的结果相反,目前尚不清楚PFC活性在个体内部变异中的介导作用:事实上,两项研究报告了较高的个体内部变异性与背外侧PFC(DLPFC)活化有关(Bellgrove等人,2004; Simmonds等人,2007),而Weissman等人,2004。 (2006年)报道了在不太一致的试验中右DLPFC的刺激前活性降低。换句话说,根据主要发现,神经影像学文献解释了较高的个体变异性是由于自上而下的执行控制(增强的PFC激活)的需求的增加,或者是注意力分散(PFC激活的减少)的结果。 ERP和执行功能:最新状态和主要局限性确定执行功能的神经生理相关性需要研究不同的认知能力,这部分取决于实验范式:例如,在Stroop或持续注意任务中(Demeter和Woldorff,2016年),选择性的自愿注意要比决定感官证据积累的“去/不去”任务,或由预期影响决策的“奇怪”任务或“反应性”的停止信号任务更加强调。抑制”通常是必需的(综述参见Jahanshahi等人,2015年)。还需要注意的是,决策过程在狭窄的时间窗口中工作,例如在加快的决策任务中执行单个试验所需的时间。这种限制要求研究人员采用具有足够时间分辨率的技术来进行自己的研究:这意味着神经影像研究可能不是最适合研究决策过程的快速时间序列的研究。此外,正如Bogacz等人所建议的。 (2010年),决策过程的持续时间会影响BOLD信号的幅度,因此功能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号