...
首页> 外文期刊>Frontiers in Genetics >Migration Route Out of Africa Unresolved by 225 Egyptian and Ethiopian Whole Genome Sequences
【24h】

Migration Route Out of Africa Unresolved by 225 Egyptian and Ethiopian Whole Genome Sequences

机译:225个埃及和埃塞俄比亚全基因组序列尚未解决从非洲迁移的路线

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Population structure is a fundamental part of population genetics. In coalescent theory, the impact of population structure or a restriction of gene flow is well-studied (Hudson, 1990 ; Nordborg, 2003 ). Admixture is inter-mating between previously isolated populations, although the biological characteristics of genetically diverged parental populations can be debated. The pairwise sequentially Markovian coalescent model (Li and Durbin, 2011 ) and the multiple sequentially Markovian coalescent model (Schiffels and Durbin, 2014 ), both recently developed methods designed for whole genome sequence analysis, do not model admixture in a formal sense. However, simulations have shown that these models are sensitive to admixture (Li and Durbin, 2011 ), because admixture increases heterozygosity and consequently appears as an increase in the effective population size. The issue of ancient vs. recent admixture, and the actual time depths, is of concern due to the potentially obscuring effects of a range of evolutionary processes. Both of these models divide time into intervals, theoretically permitting detection of events at different time depths. Consequently, these genetic models have the potential to complement anthropological and archeological studies of the distant past. Archeological, fossil, and genetic data collectively remain inconclusive regarding the route(s) of modern humans out of Africa: one possible route was north of the Red Sea through Egypt and Sinai and another possible route was south of the Red Sea across the Bab-el-Mandeb Strait (Beyin, 2011 ). Pagani et al. ( 2015 ) described a population genetic study intended to distinguish between these possibilities. The design of their study involved whole genome sequencing of 100 recent Egyptian emigrants living in Lebanon and 25 Amhara, 25 Oromo, 25 Somali, 25 Wolayta, and 25 Gumuz from present-day Ethiopia. The authors used the 1000 Genomes CEU sample as a proxy for “non-African” ancestry and the Gumuz sample as a proxy for “African” ancestry. They then reconstructed the “African” components of the Egyptian and remaining Ethiopian genomes and compared them to the 1000 Genomes YRI, CHB, TSI, and GIH samples. The authors hypothesized that the “African” component of the Egyptian genomes should be more similar to “non-African” genomes under a northern route. Conversely, the “African” component of the Ethiopian genomes should be more similar to “non-African” genomes under a southern route. The authors reported enrichment of the “African” component of the Egyptian genomes, which they interpreted as evidence in favor of the northern route. The authors' analyses involve two major critical assumptions, one involving population structure and the other involving time. With respect to population structure, the authors assumed that both the Egyptians and Ethiopians could be described using a problematic continental framework, i.e., “African” and “non-African” components which often mask ideas about what constitutes African. Progress has been made: analyses of the genetic structure of autosomal data from global surveys of thousands of individuals have revealed multi-way ancestral compositions at a sub-continental level of resolution, likely reflecting evolution of local or regional populations (Tishkoff et al., 2009 ; Shriner et al., 2014 ). Three limitations of these types of studies are (1) the extent to which convenience samples are used, in comparison to a complete catalog of all ethno-linguistic or biogeographical groups (since ethno-linguistic groups have varying time depths), (2) the extent to which populations in such studies are arbitrary constructs (Gannett, 2003 ), and (3) the appropriateness of divergence by isolation to model the genealogical relationships among ancestries. Given these caveats, the ancestral compositions of samples of modern Egyptians and Ethiopians, as well the reference CEU sample, have been previously estimated (Shriner et al., 2014 ) and are summarized in Table 1 . Notably, the two Egyptian samples we used include a low level of Cushitic ancestry but no Nilo-Saharan ancestry. This absence implies a lack of coverage of the full geographical range of Egyptians, including Nubians who today speak a Nilo-Saharan language (Dobon et al., 2015 ). There is also no evidence of coverage of individuals representing the Egyptian or Coptic language. Similarly, Figure 1B of Pagani et al. ( 2015 ) depicts “East African” ancestry, similar to the ancestry of the Gumuz (who speak a Nilo-Saharan language), constituting < 10% of the Egyptians. Table 1 Ancestral composition based on autosomal data (Shriner et al., 2014 ) . Ancestry Egyptian (%) Gumuz (%) Amhara (%) Oromo (%) Wolayta (%) Ethiopian Somali (%) Somali (%) Ari Blacksmith (%) South Sudanese (%) CEU (%) Arabian 26.4 0 18.7 10.8 7.3 0 0 0 0 0 Berber 12.6 0 1.6 0 0 0 0 0 0 0 Cushitic 13.8 0 45.0 43.4 37.5 63.2 69.6 0 0 0 Levantine-Caucasian 25.0 0 0 0 0 0 0 0 0 9.4 Niger-Congo 5.4 0 0 0 0 0 0 0
机译:人口结构是人口遗传学的基本组成部分。在合并理论中,对种群结构的影响或基因流的限制已得到了充分研究(Hudson,1990; Nordborg,2003)。尽管可以讨论遗传上不同的父母群体的生物学特性,但混和在先前孤立的群体之间相互影响。成对的顺序马尔可夫联盟模型(Li和Durbin,2011)和多重顺序的马尔可夫联盟模型(Schiffels and Durbin,2014),都是最近开发的用于全基因组序列分析的方法,不能在正式意义上模拟混合物。然而,模拟表明这些模型对混合是敏感的(Li和Durbin,2011),因为混合增加了杂合性,因此有效种群数量增加了。由于一系列进化过程的潜在隐蔽性,令人担忧的是古代与最近的混合物以及实际时间深度的问题。这两个模型都将时间划分为多个间隔,理论上可以检测到不同时间深度的事件。因此,这些遗传模型具有补充遥远过去的人类学和考古学研究的潜力。关于现代人类离开非洲的路线,考古,化石和遗传数据总体上仍无定论:一种可能的路线是穿过埃及和西奈半岛的红海以北,另一种可能的路线是穿过巴布河的红海以南。 El-Mandeb Strait(贝因,2011年)。帕加尼等。 (2015)描述了旨在区分这些可能性的人口遗传研究。他们的研究设计涉及100名最近生活在黎巴嫩的埃及移民的全基因组测序,以及现今埃塞俄比亚的25名阿姆哈拉,25名奥罗莫,25名索马里,25名沃拉塔和25名古穆兹。作者使用1000个基因组CEU样本作为“非非洲”血统的代理,使用Gumuz样本作为“非洲”血统的代理。然后,他们重建了埃及和其余埃塞俄比亚基因组的“非洲”成分,并将它们与1000个基因组YRI,CHB,TSI和GIH样本进行了比较。作者假设,在北方路线下,埃及基因组的“非洲”基因组应该更类似于“非非洲”基因组。相反,在南部途径下,埃塞俄比亚基因组的“非洲”基因组应该与“非非洲”基因组更相似。作者报告说,埃及基因组的“非洲”成分得到了丰富,他们将其解释为有利于北方路线的证据。作者的分析涉及两个主要的关键假设,一个涉及人口结构,另一个涉及时间。关于人口结构,作者认为可以使用一个有问题的大陆框架来描述埃及人和埃塞俄比亚人,即“非洲”和“非非洲”组成部分,这些组成部分往往掩盖了非洲人构成的观念。已经取得了进展:对数千名个体进行的全球调查所获得的常染色体数据的遗传结构分析显示,亚次大陆分辨率下的多向祖先成分可能反映了当地或区域人口的进化(Tishkoff等, 2009年; Shriner等人,2014年)。这些研究类型的三个局限性是:(1)与所有民族语言或生物地理群体的完整目录相比,使用便利性样本的程度(由于民族语言群体的时间深度不同),(2)这些研究中的人口在多大程度上是任意构造的(Gannett,2003年),以及(3)通过隔离来建模祖先之间的宗谱关系的适当性。考虑到这些警告,以前已经估算了现代埃及人和埃塞俄比亚人的样品的祖先成分以及参考CEU样品(Shriner等人,2014),并在表1中进行了总结。值得注意的是,我们使用的两个埃及样本包括低水平的库希族血统,但没有尼洛-撒哈拉血统。这种缺席意味着缺乏对埃及人整个地理范围的覆盖,其中包括今天讲尼洛·撒哈拉语的努比亚人(Dobon et al。,2015)。也没有证据表明代表埃及或科普特人的个人受到报道。同样,Pagani等人的图1B。 (2015年)描绘了“东非”血统,类似于古穆兹语(讲尼洛撒哈拉语),占埃及人的不到​​10%。表1基于常染色体数据的祖先组成(Shriner等,2014)。祖先埃及人(%)古穆兹人(%)阿姆哈拉人(%)奥罗莫人(%)沃拉塔人(%)埃塞俄比亚索马里人(%)索马里人(%)阿里·史密斯(%)南苏丹人(%)CEU(%)阿拉伯人26.4 0 18.7 10.8 7.3 0 0 0 0 0柏柏尔12.6 0 1.6 0 0 0 0 0 0 0乌兹别克斯坦13.8 0 45.0 43.4 37.5 63.2 69.6 0 0 0黎凡特-高加索25.0 0 0 0 0 0 0 0 0 9.4尼日尔-刚果5.4 0 0 0 0 0 0 0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号