首页> 外文期刊>MBio >Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes
【24h】

Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes

机译:弱毒突变和低重组率限制了自然选择对细菌基因组的影响。

获取原文
获取外文期刊封面目录资料

摘要

ABSTRACT Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size ( N_(e) ) by orders of magnitude. For example, for a well-mixed population with 10~(12)individuals and a typical level of homologous recombination ( r / m = 3, i.e., nucleotide changes due to recombination [ r ] occur at 3 times the mutation rate [ m ]), we predict that N_(e) is < 10~(7). An argument for high N_(e) values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N_(e) correctly. Given an estimate of N_(e) , standard population genetics models imply that selection should be sufficient to drive evolution if N_(e) × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10~(?7)or so. IMPORTANCE Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10~(?9)per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. We used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10~(?7)are effectively neutral.
机译:摘要通常认为自由生存细菌具有较大的有效种群数量,因此微小的选择性差异可以推动它们的进化。但是,由于很少进行重组,针对轻微有害等位基因的“背景选择”应将有效种群大小(N_(e))减少几个数量级。例如,对于一个具有10〜(12)个个体且典型水平的同源重组的高度混合的群体(r / m = 3,即,由于重组[r]引起的核苷酸变化发生在突变率[m]的3倍处) ),我们预测N_(e)<10〜(7)。细菌高N_(e)值的一个论据是许多细菌“物种”中的高遗传多样性,但是这种多样性可能是由于种群结构造成的:亚种群之间的多样性可能远高于亚种群内的多样性,这使得它具有很高的遗传多样性。难以正确估计N_(e)。给定N_(e)的估计值,标准的种群遗传模型暗示如果N_(e)×s> 1,其中s是选择系数,则选择应足以驱动进化。我们发现,如果正在进行背景选择或存在种群结构,这仍然大致正确。总的来说,我们预测即使对于人口众多的自由生存细菌,自然选择也只有在s大于10〜(?7)左右时才是重要的力量。重要信息由于细菌形成了数万亿人口的庞大种群,因此最简单的理论预测是,即使一个世代的优势仅为10〜(?9),一个位点的等位基因也会占优势。换句话说,在大多数个体中,实际上每个核苷酸都将处于局部最优状态。更复杂的理论认为细菌基因组每个都有数百万个位点,并且在许多位点上的选择事件可能会相互干扰,因此只有较大的影响才重要。但是,细菌可以交换遗传物质,原则上,这种交换可以消除位点进化之间的干扰。我们使用模拟来确认,在具有实际重组水平的多位点进化过程中,只有较大的影响才重要。我们认为小于10〜(?7)的优势实际上是中立的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号