...
首页> 外文期刊>MBio >Use of Highly Pathogenic Avian Influenza A(H5N1) Gain-Of-Function Studies for Molecular-Based Surveillance and Pandemic Preparedness
【24h】

Use of Highly Pathogenic Avian Influenza A(H5N1) Gain-Of-Function Studies for Molecular-Based Surveillance and Pandemic Preparedness

机译:高致病性禽流感A(H5N1)功能获得性研究在基于分子的监视和大流行防范中的应用

获取原文

摘要

INTRODUCTION Zoonotic influenza viruses circulating in poultry and swine pose an ever present threat to human health. In particular, the rapid geographical expansion of highly pathogenic avian influenza (HPAI) A(H5N1) throughout Asia and then into Europe, the Middle East, and Africa during the 2000s galvanized the global community in an attempt to control this rapidly growing threat. Despite successful control efforts in some countries, the virus remains endemic in poultry in at least six countries and continues to cause human illness and deaths as well as countless outbreaks in birds. During the past decade, 668 cases and 393 deaths were detected and reported to the World Health Organization (WHO) ( 1 ). During the 17?years since human infections with HPAI A(H5N1) were first identified in Hong Kong, Special Administrative Region, People’s Republic of China, in 1997, these viruses have evolved substantially through mutation and reassortment, resulting in multiple divergent genotypes and clades ( 2 ). Ongoing H5N1 circulation has appropriately resulted in a focus on sequencing viral genomes to understand the evolution of these viruses and the significance of observed genetic changes. Expanded laboratory capacity for high-throughput Sanger sequencing and recent technological advances, such as next-generation sequencing and parallel computing, have revolutionized the quantity, quality, and availability of gene sequences and our ability to quickly and accurately analyze these data ( 3 ). Consequently, the number of animal and human influenza virus sequences available in publically accessible databases has dramatically increased over the years, as have the bioinformatics tools required for efficient investigation ( 4 , 5 ). These advances in laboratory and analytical methods provide strong incentives to utilize molecular data for pandemic risk assessment of zoonotic influenza viruses at the animal-human interface ( 6 ). However, examination of influenza sequence data alone does not allow us to assess the pandemic potential of a virus. Pandemic risk assessment that utilizes sequence data can take place only after critical genetic signatures are identified through laboratory research into the consequences for relevant biological properties (or phenotypes). These critical genetic features include those that based on previous experimental validation are predicted to confer virulence and/or have the ability to transmit efficiently in mammals. In this context, genomes are sequenced, mutations are detected relative to earlier viruses and prototype strains, significance is appraised based on prior knowledge of genetic markers, and phenotypes are tested using a variety of in vitro and in vivo experiments. Viruses possessing phenotypes of interest or concern often become candidates for reverse-genetics studies, which are essential to elucidate the precise molecular correlate(s) of a given phenotype ( Fig.?1 ). From a molecular epidemiological perspective, this process is at the heart of how the public health community makes informed decisions about the threat posed by zoonotic influenza viruses and which interventions might be most effective ( 7 ). FIG?1? H5N1 or other influenza A virus molecular-based surveillance, gain-of-function research, and pandemic preparedness decision making. Laboratories worldwide have employed reverse genetics to study the mechanisms by which HPAI H5N1 and other zoonotic influenza viruses evolve and how these mechanisms influence host receptor specificity, antigenic variation, replication, pathogenesis, drug susceptibility, and transmission ( 8 – 11 ). Besides being used to create vaccine viruses for the development of live, attenuated ( 12 ) and inactivated prepandemic H5N1 influenza vaccines ( 13 ), reverse-genetics methodologies also have been used for many years to study the phenotypic consequences of particular mutations, including genetic changes that confer a gain of function (GOF). Influenza virus GOF studies have focused on several research areas: in vitro and/or in vivo replication in mammalian cell culture or animal hosts, adaptive mutations conferring changes in host susceptibility, alteration of receptor binding profiles and/or tropism for mammalian airway tissues, enhanced polymerase activity, changes in host antiviral response (e.g., cell signaling pathways), susceptibility to antiviral drugs, and pathogenesis and/or transmissibility in mammalian animal models. Such GOF experiments have elucidated key biological principles and provided the scientific basis for genomic sequence-based risk assessment of zoonotic viruses with pandemic potential. For example, the molecular basis for avian versus mammalian influenza virus receptor binding (α2,3 versus α2,6 sialylated glycans) has been elucidated largely through GOF experiments, and some recent studies that identified specific HA mutations conferring a switch from avian to mammalian host receptor specificity also demonstrated the impa
机译:引言家禽和猪中传播的人畜共患流感病毒对人类健康构成了前所未有的威胁。特别是在2000年代,高致病性禽流感(HPAI)A(H5N1)在整个亚洲迅速扩散,然后在欧洲,中东和非洲扩散到欧洲,中东和非洲,这在全球范围内引起了人们的广泛关注,以试图控制这一迅速增长的威胁。尽管已在某些国家成功地进行了控制,但该病毒仍在至少六个国家的家禽中流行,并继续造成人类疾病和死亡,以及无数禽流感暴发。在过去的十年中,共发现668例病例和393例死亡,并报告给世界卫生组织(WHO)(1)。自1997年在中国香港特别行政区首次发现人类感染HPAI A(H5N1)以来的17年来,这些病毒已通过突变和重排大量进化,导致了多种不同的基因型和进化枝(2)。持续的H5N1循环适当地导致了对病毒基因组测序的重视,以了解这些病毒的进化以及观察到的遗传变化的重要性。高通量Sanger测序的实验室能力的扩展以及下一代测序和并行计算等最新技术的进步,彻底改变了基因序列的数量,质量和可用性,以及我们快速,准确地分析这些数据的能力(3)。因此,多年来,可公开访问的数据库中可用的动物和人类流感病毒序列的数量急剧增加,有效调查所需的生物信息学工具也已如此(4、5)。实验室和分析方法的这些进步为利用分子数据在动物-人界面进行人畜共患流感病毒的大流行风险评估提供了强有力的动力(6)。但是,仅检查流感序列数据并不能使我们评估病毒的大流行潜力。利用序列数据的大流行风险评估只能在通过实验室研究确定对相关生物学特性(或表型)的后果的关键遗传特征后才能进行。这些关键的遗传特征包括那些基于先前实验验证的遗传特征,这些特征被预测具有毒力和/或具有在哺乳动物中有效传播的能力。在这种情况下,对基因组进行测序,相对于早期病毒和原型毒株检测突变,基于遗传标记的先验知识评估其重要性,并使用多种体外和体内实验测试表型。具有感兴趣或关注表型的病毒通常成为逆向遗传学研究的候选者,这对于阐明给定表型的精确分子相关性至关重要(图?1)。从分子流行病学的角度来看,此过程是公共卫生界如何就人畜共患流感病毒构成的威胁以及哪些干预措施可能最有效做出明智决定的核心(7)。图。1? H5N1或其他基于分子的甲型流感病毒监测,功能获得研究和大流行防范决策。全世界的实验室已经采用反向遗传学研究了HPAI H5N1和其他人畜共患流感病毒的进化机制,以及这些机制如何影响宿主受体特异性,抗原变异,复制,发病机制,药物敏感性和传播(8-11)。除了用于生产活,减毒(12)和灭活的大流行前H5N1流感疫苗的疫苗病毒(13)以外,逆向遗传学方法还已经被使用了很多年,以研究特定突变的表型后果,包括遗传变化。赋予功能增益(GOF)。流感病毒GOF研究集中在几个研究领域:哺乳动物细胞培养物或动物宿主中的体外和/或体内复制,赋予宿主敏感性的适应性突变,哺乳动物气道组织受体结合谱和/或向性的改变,增强了聚合酶活性,宿主抗病毒反应(例如,细胞信号传导途径)的变化,对抗病毒药物的敏感性以及哺乳动物动物模型中的发病机理和/或传播性。这样的GOF实验阐明了关键的生物学原理,并为具有大流行潜力的人畜共患病毒基于基因组序列的风险评估提供了科学依据。例如,已通过GOF实验很大程度上阐明了禽类与哺乳动物流感病毒受体结合的分子基础(α2,3与α2,6唾液酸化聚糖),最近的一些研究发现特定的HA突变可导致从禽类向哺乳动物宿主的转变受体特异性也证明了

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号