...
首页> 外文期刊>MBio >Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein
【24h】

Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein

机译:淋病奈瑟氏球菌的多药耐药性:MtrD外排蛋白中功能上重要的残留物的鉴定

获取原文

摘要

A key mechanism that Neisseria gonorrhoeae uses to achieve multidrug resistance is the expulsion of structurally different antimicrobials by the MtrD multidrug efflux protein. MtrD resembles the homologous Escherichia coli AcrB efflux protein with several common structural features, including an open cleft containing putative access and deep binding pockets proposed to interact with substrates. A highly discriminating N. gonorrhoeae strain, with the MtrD and NorM multidrug efflux pumps inactivated, was constructed and used to confirm and extend the substrate profile of MtrD to include 14 new compounds. The structural basis of substrate interactions with MtrD was interrogated by a combination of long-timescale molecular dynamics simulations and docking studies together with site-directed mutagenesis of selected residues. Of the MtrD mutants generated, only one (S611A) retained a wild-type (WT) resistance profile, while others (F136A, F176A, I605A, F610A, F612C, and F623C) showed reduced resistance to different antimicrobial compounds. Docking studies of eight MtrD substrates confirmed that many of the mutated residues play important nonspecific roles in binding to these substrates. Long-timescale molecular dynamics simulations of MtrD with its substrate progesterone showed the spontaneous binding of the substrate to the access pocket of the binding cleft and its subsequent penetration into the deep binding pocket, allowing the permeation pathway for a substrate through this important resistance mechanism to be identified. These findings provide a detailed picture of the interaction of MtrD with substrates that can be used as a basis for rational antibiotic and inhibitor design.
机译:淋病奈瑟氏球菌用于实现多药耐药性的关键机制是MtrD多药外排蛋白排出结构上不同的抗菌素。 MtrD类似于具有多个常见结构特征的同源大肠杆菌AcrB外排蛋白,包括一个开放的裂缝,该裂缝包含推定的通道和拟与底物相互作用的深层结合袋。构建了高度区分的淋病奈瑟氏球菌菌株,并停用了MtrD和NorM多药外排泵,并将其用于确认和扩展MtrD的底物谱,包括14种新化合物。长期分子动力学模拟和对接研究以及对选定残基的定点诱变相结合,对底物与MtrD相互作用的结构基础进行了研究。在生成的MtrD突变体中,只有一个(S611A)保留了野生型(WT)耐药性,而其他(F136A,F176A,I605A,F610A,F612C和F623C)表现出对不同抗菌化合物的耐药性降低。对八个MtrD底物的对接研究证实,许多突变残基在与这些底物结合中起重要的非特异性作用。 MtrD及其底物孕酮的长期分子动力学模拟表明,底物自发结合到结合裂口的进入袋中,随后渗透到深层结合袋中,从而使底物透过这种重要的抗性机制渗透被识别。这些发现提供了MtrD与底物相互作用的详细图片,可以用作合理抗生素和抑制剂设计的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号