首页> 外文期刊>Frontiers in Systems Neuroscience >Editorial: Metastable Dynamics of Neural Ensembles
【24h】

Editorial: Metastable Dynamics of Neural Ensembles

机译:社论:神经集成体的亚稳态动力学

获取原文
           

摘要

A classical view of neural computation is that it can be characterized in terms of convergence to fixed-point-type attractor states (representing for instance memory patterns in Hopfield, 1982 ) or limit-cycle-like sequential transitions among states (mapping e.g., motor or syntactical sequences in Elman, 1990 ). After over three decades, is this still a valid model of how brain dynamics implements cognition? The idea that neuro-computational dynamics is mainly deterministically driven by convergence to emergent stable states in a synapticetwork noisy background has been lively debated, and recently challenged both empirically and by computational work. This question touches on the very basics of our understanding of neural computation; and hence it is one of the most exciting topics currently in systems and computational neuroscience. This e-book comprises a comprehensive collection of recent theoretical and experimental contributions addressing the question of stable versus transient neural population dynamics, and its implications for the observed variability in neural activity, from diverse, complementary angles. Metastability in models A connecting theme for the multiple contemporary views on metastability in the brain was proposed first by Tognoli and Kelso . In their foundational approach, the authors discuss classical and recent views on how information transfer between brain regions could be accomplished through synchronization and collective neural responses. They frame these ideas in terms of the coordination dynamics concept, potentially a key aspect for understanding metastability in neuronal populations. Metastability and its possible functional role both within and outside of behavioral task contexts is further addressed in four specific modeling approaches situated at different spatial scales, ranging from macro/mesoscopic levels ( Schwappach et al. ; Stratton and Wiles ; Aguilera et al. ) to a biophysically detailed level of neuronal systems description ( Mazzucato et al. ). The balance between global segregation and integration at a macroscopic scale is theoretically analyzed by Stratton and Wiles . They propose a computational model focused on how the thalamo-cortical loop may underlie long-range segregation between brain regions, producing metastable responses observed at large spatial scales. Metastability at macroscopic levels could also stem from sensimotor interactions, as suggested by Aguilera et al. These authors designed a new theoretical framework and implemented it in an agent-based model which interacts with the environment. According to this model, metastability arises from the dynamics of sensori-motor feedback interactions, beyond what would be expected from considering brain activity just in isolation. At mesoscopic scales, neural population models have been constructed that produce metastability through attracting chains of heteroclinic orbits, generating transient dynamics through a sequence of saddle points along which one or several axes are stable (the stable subspace). Following up on this theory, Schwappach et al. demonstrate, using a novel neural field model, how such heteroclinic subspaces can account for part of the observed trial-to-trial variability at the mesoscopic level. Hence, this variability may partly stem from sources other than neuronal or synaptic noise. At microscopic (biophysical) scales, using a clustered spiking model (in which connectivity patterns are heterogeneous) which exhibits metastable states, Mazzucato et al. show that variation in neuronal ensemble activity may be confined to small subspaces of the whole state space spanned by all the individual units' firing-rates. Moreover, the dimensionality of these subspaces is smaller during stimulus-evoked activity than in the absence of a task. This is in line with empirical studies which report the reduction of neuronal variability upon stimulus presentation (Churchland et al., 2010 ). Empirical studies Metastability was also addressed in four studies which provide novel analytical tools and empirical evidence. To?i? et al. proposed a new data analysis technique to identify metastability empirically, which was used to infer metastable states in local field potentials evoked by visual stimuli in anesthetised ferrets. Interestingly, visual scan paths ( Wilkinson and Metta ) reveal complex dynamics which possibly reflects underlying metastable neural activity. In Wilkinson and Metta , the authors proposed a theoretical framework, termed the singularity hypothesis , which relies on transient spiral waves which govern persistent neural activity states underlying oculomotor postural control. In general, motor control strategies may be represented in neuronal activity patterns as a complex, distributed spatiotemporal code, which may not be revealed by looking just at neuronal firing rates within recorded ensembles. This is shown in Mao et al. who study behaving rats performing a directional choice ta
机译:神经计算的经典观点是,它可以通过收敛到定点型吸引子状态(例如,代表Hopfield,1982年的存储模式)或状态之间的极限循环式连续过渡(映射,例如运动)来表征。或Elman,1990年的句法序列)。经过三十多年,这仍然是大脑动力学如何实现认知的有效模型吗?关于神经计算动力学主要由确定性驱动的观点是,在收敛的突触/网络嘈杂背景下收敛到紧急稳定状态,这一观点已经引起了激烈的争论,并且最近受到了经验和计算工作的挑战。这个问题触及了我们对神经计算的理解的基础。因此,它是当前系统和计算神经科学中最令人兴奋的主题之一。这本电子书包含了一系列最新的理论和实验性著作,从不同的互补角度探讨了稳定的与短暂的神经种群动态及其对观察到的神经活动变异性的影响。模型中的亚稳态Tognoli和Kelso首先提出了关于脑亚稳态的多种当代观点的联系主题。在他们的基本方法中,作者讨论了关于如何通过同步和集体神经反应来完成大脑区域之间信息传递的经典观点和最新观点。他们从协调动力学概念的角度来构架这些想法,这可能是理解神经元群体亚稳态的关键方面。从宏观/微观层面(Schwappach等人; Stratton和Wiles; Aguilera等人)到宏观/介观层面的四种特定建模方法,进一步解决了在行为任务上下文内外的亚稳态及其在行为任务上下文内的功能作用。神经系统描述的生物学层面上的详细描述(Mazzucato等人)。 Stratton和Wiles从理论上分析了宏观上全球隔离与整合之间的平衡。他们提出了一个计算模型,该模型侧重于丘脑-皮质环如何可能在大脑区域之间的远距离隔离之下,从而产生在大空间尺度上观察到的亚稳态反应。如Aguilera等人的建议,宏观水平的亚稳定性也可能源于感觉运动的相互作用。这些作者设计了一个新的理论框架,并在与环境交互的基于代理的模型中实现了该框架。根据该模型,亚稳态源于感觉-运动反馈相互作用的动力学,这超出了单独考虑大脑活动所期望的范围。在介观尺度上,已经构建了神经种群模型,该模型通过吸引异斜轨道链产生亚稳定性,并通过一系列沿一个或多个轴稳定的鞍点序列(稳定子空间)产生瞬态动力学。遵循这一理论,Schwappach等。通过使用新型的神经场模型,演示了这种异斜度子空间如何解释介观水平上观察到的试验间差异。因此,这种可变性可能部分源于神经元或突触噪声以外的其他来源。 Mazzucato等人在微观(生物物理)尺度上,使用表现出亚稳定状态的簇状尖峰模型(连接模式是异构的)。表明神经元合奏活动的变化可能被限制在整个状态空间的较小子空间中,该子空间由所有单个单元的触发频率跨越。而且,在没有刺激的情况下,这些子空间的维数比没有任务时要小。这与经验研究一致,该研究报告了刺激表现后神经元变异性的降低(Churchland等,2010)。实证研究在四个研究中还讨论了亚稳态,这些研究提供了新颖的分析工具和经验证据。到吗?等。提出了一种新的数据分析技术来凭经验识别亚稳态,该技术用于推断麻醉雪貂在视觉刺激引起的局部场电位中的亚稳态。有趣的是,视觉扫描路径(Wilkinson和Metta)揭示了复杂的动力学,可能反映了潜在的亚稳态神经活动。在Wilkinson和Metta中,作者提出了一个理论框架,称为奇异性假设,该理论依赖于瞬态螺旋波,该瞬态螺旋波控制着动眼姿势控制的持续神经活动状态。通常,运动控制策略可以在神经元活动模式中表示为复杂的分布式时空代码,而仅通过查看记录的乐团中的神经元放电速率可能无法发现。这在毛等人。研究行为大鼠执行方向选择的人

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号