...
首页> 外文期刊>Frontiers in Neuroscience >Aminochrome Induces Irreversible Mitochondrial Dysfunction by Inducing Autophagy Dysfunction in Parkinson's Disease
【24h】

Aminochrome Induces Irreversible Mitochondrial Dysfunction by Inducing Autophagy Dysfunction in Parkinson's Disease

机译:氨基色素通过诱导帕金森氏病中的自噬功能障碍来诱导不可逆的线粒体功能障碍

获取原文
           

摘要

Mitochondrial dysfunction in parkinson's disease In Parkinson's disease, mitochondrial complex I activity is diminished, and mitochondrial deoxyribonucleic acid (DNA) mutations accumulate (Zhang, 2013 ). The first evidence that mitochondrial dysfunction was involved in the pathogenesis of Parkinson's disease came from parkinsonism induced by the accidental exposure of drug users to 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP), an inhibitor of the mitochondrial complex I of the electron transport chain (Langton et al., 1983 ; Esteves et al., 2011 ). Parker et al. ( 1989 ) found a significant reduction in the activity of complex I in platelet mitochondria purified from patients with idiopathic Parkinson's disease (Esteves et al., 2011 ). Further evidence for mitochondrial dysfunction in Parkinson's disease arose from studies developed in the substantia nigra of postmortem brains of patients with the disease, which showed deficiency of complex-I activity (Shapira et al., 1990 ; Esteves et al., 2011 ). Genes associated with familial form of the disease has been reported such as pink1, parkin, DJ-1, and CHCHD2 (Kazlauskaite and Muqit, 2015 ; Meng et al., 2017 ). Autophagy Macroautophagy is the most widely studied type of autophagy, where vacuoles with double membranes form, surround cellular elements (such as proteins, lipids, and organelles), and fuse with lysosomes, the enzymes of which degrade the autophagic cargo. Autophagy is controlled by proteins that are encoded by autophagy-related genes (ATGs), ATG1–ATG35. These proteins are organized into complexes that mediate the following steps in the autophagic process: initiation, elongation, maturation, and fusion and degradation (Tan et al., 2014 ). The pathways that control autophagy are primarily mTOR-dependent and mTOR-independent (mTOR: the mechanistic target of rapamycin, a serine/threonine kinase). mTOR is primarily an inhibitory signal, which participates upstream of the ATG proteins. In the mTOR-independent pathway the autophagy can be directly activated by AMPK [adenosine monophosphate (AMP)-activated protein kinase], leading to direct phosphorylation of ULK1 (serine-threonine-protein kinase that is encoded by the ULK1 gene) and beclin-1 (Tan et al., 2014 ). Mitophagy The degradation of mitochondria damaged by the autophagic pathway is known as mitophagy and constitutes one of the main mechanisms of cellular homeostasis (Zhang, 2013 ; Brady and Brady, 2016 ). Mitochondrial damage causes a decrease in mitochondrial membrane potential or an increase in mitochondrial fission, and both situations activate mitophagy (Brady and Brady, 2016 ). There are multiple mechanisms by which mitochondria are targeted for degradation in autophagosomes, but the best understood are the pathways of mitophagy induced by PINK/Parkin and BNIP3 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3), and NIX-dependent mitophagy (Nix: also known as BNIP3L, a BH3-only protein of the BCL-2 pro-apoptotic family). The mitochondrial protein PINK1 [phosphatase and tensin homolog (PTEN)-induced putative kinase 1], a serine-threonine kinase, is unstable due to presenilin-associated rhomboid-like protease activities (PARL). The decrease in mitochondrial membrane potential inhibits PINK1 degradation by PARL. In response to mitochondrial depolarization, PINK stabilizes, and accumulates in the outer mitochondrial membrane (OMM), where it phosphorylates ubiquitin in mitochondrial proteins to recruit autophagic cargo adapters, such as OPTN (Optineurin) and NDP52 (Nuclear dot protein 52 kDa), which directly bind to light chain 3 (LC3) in the autophagosome leading to degradation of mitochondria within autophagolysosomes (Springer and Macleod, 2016 ). PINK1 also recruits the E3 ubiquitin ligase Parkin and ubiquitin-specific substrates in the OMM, including VDAC (voltage-dependent anion-selective channel), Miro, and Mitofusin-2 to amplify the signal initiated by PINK (Springer and Macleod, 2016 ). Mutations in PARK2 (Parkin) and PARK6 (PINK1) have been independently linked to familial cases of Parkinson's disease, associating defects in mitophagy with the degeneration of dopaminergic neurons, a major feature of Parkinson's disease (Pikrell and Youle, 2015 ; Springer and Macleod, 2016 ). The clearance of mitochondria damaged by mitophagy prevents the accumulation of dysfunctional mitochondria and can also induce mitochondrial biogenesis, increasing cell survival. On the contrary, the decrease in mitophagy occurring during aging, for example, prevents both the removal of damaged mitochondria and alters mitochondrial biogenesis, which causes the progressive accumulation of dysfunctional mitochondria (Zhang, 2013 ; Palikaras et al., 2015 ). The dysfunction of the autophagic/lysosomal pathway is associated with mitochondrial dysfunction, which may be due to the decrease in the autophagic degradation of the dysfunctional mitochondria. For example, Wu et al. ( 2009 ) reported that deletion o
机译:帕金森氏病中的线粒体功能障碍在帕金森氏病中,线粒体复合体I活性降低,线粒体脱氧核糖核酸(DNA)突变积累(Zhang,2013年)。线粒体功能障碍参与帕金森氏病发病机理的第一个证据来自吸毒者意外接触1-甲基-4-苯基-1,2,3,4-四氢吡啶(MPTP)引起的帕金森综合症电子传输链的线粒体复合体I(Langton等,1983; Esteves等,2011)。 Parker等。 (1989年)发现从特发性帕金森病患者中纯化的血小板线粒体中复合物I的活性显着降低(Esteves等,2011)。帕金森氏病线粒体功能障碍的进一步证据来自对该病患者死后黑质的黑质研究,该研究表明复合物I活性不足(Shapira等,1990; Esteves等,2011)。已经报道了与家族性疾病相关的基因,例如pink1,parkin,DJ-1和C​​HCHD2(Kazlauskaite和Muqit,2015年; Meng等人,2017年)。自噬巨噬细胞自噬是研究最广泛的自噬类型,其中形成具有双膜的液泡,围绕细胞元件(例如蛋白质,脂质和细胞器),并与溶酶体融合,其酶降解自噬货物。自噬受由自噬相关基因(ATG)ATG1-ATG35编码的蛋白质控制。这些蛋白质被组织成复合物,介导自噬过程中的以下步骤:起始,延伸,成熟以及融合和降解(Tan等,2014)。控制自噬的途径主要是mTOR依赖性和mTOR依赖性(mTOR:雷帕霉素(一种丝氨酸/苏氨酸激酶)的机械靶标)。 mTOR主要是抑制信号,它参与ATG蛋白的上游。在不依赖mTOR的途径中,自噬可以被AMPK [单磷酸腺苷(AMP)激活的蛋白激酶]直接激活,从而导致ULK1(由ULK1基因编码的丝氨酸-苏氨酸蛋白激酶)和beclin-直接磷酸化。 1(Tan等,2014)。线粒体被自噬途径破坏的线粒体降解被称为线粒体,是细胞体内稳态的主要机制之一(Zhang,2013; Brady and Brady,2016)。线粒体损伤导致线粒体膜电位降低或线粒体裂变增加,并且两种情况都激活线粒体(Brady and Brady,2016)。线粒体可通过多种机制靶向自噬体的降解,但最好的理解是PINK / Parkin和BNIP3(BCL2 /腺病毒E1B 19 kDa蛋白相互作用蛋白3)和NIX依赖的线粒体诱导的线粒体吞噬途径( Nix:也称为BNIP3L,是BCL-2促凋亡家族的仅BH3蛋白质)。线粒体蛋白PINK1 [磷酸酶和张力蛋白同源物(PTEN)诱导的假定激酶1],一种丝氨酸-苏氨酸激酶,由于与早老素相关的菱形样蛋白酶活性(PARL)而不稳定。线粒体膜电位的降低会抑制PINK1被PARL降解。响应线粒体去极化,PINK稳定并积聚在线粒体外膜(OMM)中,从而使线粒体蛋白中的泛素磷酸化以募集自噬性货物衔接子,例如OPTN(Optineurin)和NDP52(Nuclear dot protein 52 kDa)。在自噬体中直接与轻链3(LC3)结合,导致自噬体中的线粒体降解(Springer和Macleod,2016年)。 PINK1还在OMM中募集E3泛素连接酶Parkin和泛素特异性底物,包括VDAC(电压依赖性阴离子选择性通道),Miro和Mitofusin-2,以放大PINK引发的信号(Springer和Macleod,2016年)。 PARK2(Parkin)和PARK6(PINK1)的突变已与家族性帕金森氏病相关联,从而使线粒体缺陷与多巴胺能神经元变性相关联,多巴胺能神经元是帕金森氏病的主要特征(Pikrell和Youle,2015; Springer和Macleod, 2016)。线粒体破坏的线粒体清除会阻止功能性线粒体的积累,还可以诱导线粒体生物发生,从而提高细胞存活率。相反,衰老过程中线粒体的减少,例如,既防止了受损的线粒体的清除,又阻止了线粒体生物发生的改变,从而导致线粒体功能障碍的逐步积累(Zhang,2013; Palikaras et al。,2015)。自噬/溶酶体途径的功能障碍与线粒体功能障碍有关,这可能是由于功能障碍线粒体自噬降解的减少所致。例如,吴等。 (2009)报道删除o

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号