首页> 外文期刊>Frontiers in Neuroscience >On the Role of Aminochrome in Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Parkinson's Disease
【24h】

On the Role of Aminochrome in Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Parkinson's Disease

机译:氨基色素在帕金森病线粒体功能障碍和内质网应激中的作用

获取原文
           

摘要

The identity of what triggers the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease (PD) is still unknown. Fifty years since its introduction in PD therapy, L-dopa is still the gold-standard drug despite severe side effects observed after 4 to 6 years of being treated with it. There are no new therapies that can halt or slow down the progression of the disease and much of the research efforts in this context have been destined to treat L-dopa-induced dyskinesia. There is huge concern about the difficulties that have been observed in the translation of successful preclinical results into clinical studies and new therapies in PD. The discovery of genes associated with familiar forms of PD has made an enormous input into basic research, which seeks to understand the degenerative process resulting in the loss of dopaminergic neurons in the nigrostriatal system. Several mechanisms have been suggested to be involved in the degeneration of nigrostriatal neurons in PD, including mitochondrial dysfunction, endoplasmic reticulum stress, lysosomal and proteasomal protein degradation dysfunction, the formation of neurotoxic alpha-synuclein (SNCA) oligomers, neuroinflammation, and oxidative stress. Mitochondrial Dysfunction The brain is completely dependent on chemical energy (ATP) in order to perform the release of neurotransmitters such as dopamine. Therefore, the existence of functional mitochondria is essential to the performed role of a dopaminergic neuron, i.e., to release dopamine. Postmortem brains with PD presented a deficiency in Complex I activity (Shapira et al., 1990 ; Esteves et al., 2011 ). Reduced Complex I activity in platelet mitochondria, purified from patients with idiopathic PD, has been observed (Esteves et al., 2011 ). CHCHD2 mutation in PD patient fibroblasts reduces oxidative phosphorylation in Complexes I and IV and induces fragmentation of the mitochondrial reticular morphology (Lee et al., 2018 ). A meta-analysis supports the deficit in Complexes I and IV in the case of peripheral blood, the frontal cortex, the cerebellum and the substantia nigra in PD (Holper et al., 2018 ). Analysis of mitochondria morphology in PD samples compared to controls revealed a significant decrease in the number of healthy mitochondria per cell. Several genes associated with familial forms of PD (PINK-1, DJ-1, Parkin, HTRA2) are linked to mitochondrial impairment (Larsen et al., 2018 ). Parkinson's disease, associated with vacuolar protein sorting 35 mutation, affects Complex I activity (Zhou et al., 2017 ). PINK1 and DJ-1 mutation induce energetic inefficiency (Lopez-Fabuel et al., 2017 ). SNCA induces mitochondrial dysfunction (Devi et al., 2008 ; Chinta et al., 2010 ; Nakamura et al., 2011 ; Martínez et al., 2018 ). Endoplasmic Reticulum Stress Endoplasmic reticulum is involved in secretory protein translocation and the quality control of secretory protein folding. Misfolded or unfolded proteins in the lumen accumulate under endoplasmic reticulum stress, which causing an integrated adaptive response identified as the unfolded protein response (UPR), which seeks to restore proteostasis within the secretory pathway (Cabral-Miranda and Hetz, 2018 ). The UPR activation markers, phosphorylated eukaryotic initiation factor 2alpha and phosphorylated pancreatic endoplasmic reticulum kinase, were detected in dopaminergic neurons containing neuromelanin in the substantia nigra of PD patients. Interestingly, phosphorylated pancreatic endoplasmic reticulum kinase was colocalized with an increased level of SNCA (Hoozemans et al., 2007 ). Neuropathological analysis of PD postmortem brain tissue revealed that pIRE1α is expressed within neurons containing elevated levels of α-synuclein or Lewy bodies (Heman-Ackah et al., 2017 ). SNCA triggers endoplasmic reticulum stress via the protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic translation initiation factor 2α signaling pathway (Liu et al., 2018 ). N370S mutation and β-glucocerebrosidase-1 retention within the endoplasmic reticulum induce endoplasmic reticulum stress activation, triggering UPR and Golgi apparatus fragmentation (García-Sanz et al., 2017 ). It has been reported that endoplasmic reticulum stress activates the chaperone-mediated autophagy pathway via an EIF2AK3/PERK-MAP2K4/MKK4-MAPK14/p38-dependent manner (Li et al., 2018 ). Dopamine Oxidation and Parkinson's Disease One of the most characteristic features of the pathology of PD, which results in the onset of motor symptoms, is the massive loss of dopaminergic neurons containing neuromelanin in the nigrostriatal system. As mentioned before, several mechanisms, including mitochondrial dysfunction and endoplasmic reticulum stress, have been proposed as being involved in the degeneration of the nigrostriatal neurons in PD, but the question concerns what triggers these mechanisms in dopaminergic neurons containing neuromelanin. Many times, it has been suggested that the involve
机译:引发帕金森氏病(PD)的含有神经黑色素的多巴胺能神经元丢失的原因仍是未知的。尽管左旋多巴在PD治疗中问世已有50年,但在用这种药物治疗4至6年后观察到严重的副作用,仍然是金标准药物。没有新的疗法可以阻止或减慢疾病的进展,在这种情况下,许多研究工作注定要治疗左旋多巴引起的运动障碍。人们非常关注将成功的临床前结果转化为PD的临床研究和新疗法所遇到的困难。与熟悉的PD形式相关的基因的发现为基础研究提供了巨大的投入,该基础研究旨在了解导致黑质纹状体系统中多巴胺能神经元丢失的退化过程。已经提出了PD中黑质纹状体神经元变性的几种机制,包括线粒体功能障碍,内质网应激,溶酶体和蛋白酶体蛋白质降解功能失调,神经毒性α-突触核蛋白(SNCA)低聚物的形成,神经炎症和氧化应激。线粒体功能障碍为了完全释放多巴胺等神经递质,大脑完全依赖化学能(ATP)。因此,功能性线粒体的存在对于多巴胺能神经元的执行作用,即释放多巴胺至关重要。具有PD的死后大脑表现出复合物I活性的缺乏(Shapira等,1990; Esteves等,2011)。从特发性PD患者中纯化出的血小板线粒体中复合物I活性降低了(Esteves等,2011)。 PD患者成纤维细胞中的CHCHD2突变可降低复合物I和IV中的氧化磷酸化,并诱导线粒体网状形态碎裂(Lee et al。,2018)。一项荟萃分析支持了PD患者外周血,额叶皮质,小脑和黑质中复合物I和IV的缺乏(Holper et al。,2018)。与对照相比,PD样品中线粒体形态的分析显示,每个细胞中健康线粒体的数量显着减少。与家族性PD相关的几个基因(PINK-1,DJ-1,Parkin,HTRA2)与线粒体损伤相关(Larsen等,2018)。与液泡蛋白分选35突变相关的帕金森氏病会影响复合体I的活性(Zhou等,2017)。 PINK1和DJ-1突变诱导能量效率低下(Lopez-Fabuel et al。,2017)。 SNCA引起线粒体功能障碍(Devi等,2008; Chinta等,2010; Nakamura等,2011;Martínez等,2018)。内质网应激内质网参与分泌蛋白的转运和分泌蛋白折叠的质量控制。管腔中错误折叠或未折叠的蛋白质在内质网应激下积聚,从而导致整合的适应性反应被确定为未折叠蛋白质反应(UPR),旨在恢复分泌途径内的蛋白稳态(Cabral-Miranda和Hetz,2018年)。在PD患者黑质中含有神经黑色素的多巴胺能神经元中检测到UPR激活标记物,磷酸化的真核生物起始因子2alpha和磷酸化的胰腺内质网激酶。有趣的是,磷酸化的胰腺内质网激酶与SNCA水平升高共定位(Hoozemans等,2007)。对PD死后脑组织的神经病理学分析表明,pIRE1α在含有升高水平的α-突触核蛋白或路易体的神经元中表达(Heman-Ackah et al。,2017)。 SNCA通过蛋白激酶RNA样内质网激酶/真核翻译起始因子2α信号通路触发内质网应激(Liu等人,2018)。 N370S突变和内质网中的β-葡萄糖脑苷脂酶-1保留会诱导内质网应力激活,从而触发UPR和高尔基体碎裂(García-Sanz等,2017)。据报道,内质网应激通过EIF2AK3 / PERK-MAP2K4 / MKK4-MAPK14 / p38依赖性方式激活伴侣介导的自噬途径(Li等,2018)。多巴胺氧化和帕金森氏病PD病理的最典型特征之一是运动性症状的发作,它是黑质纹状体系统中含有神经黑色素的多巴胺能神经元的大量损失。如前所述,已经提出了包括线粒体功能障碍和内质网应激在内的几种机制,它们参与了PD黑质纹状体神经元的变性,但是这个问题涉及在包含神经黑色素的多巴胺能神经元中触发这些机制的原因。很多时候,有人建议

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号