首页> 外文期刊>Frontiers in Oncology >Heterogeneity of Phosphatidylinositol-3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin Activation in Cancer: Is PI3K Isoform Specificity Important?
【24h】

Heterogeneity of Phosphatidylinositol-3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin Activation in Cancer: Is PI3K Isoform Specificity Important?

机译:癌症中雷帕霉素活化的磷脂酰肌醇-3-激酶(PI3K)/ AKT /哺乳动物靶的异质性:PI3K亚型特异性重要吗?

获取原文
           

摘要

Introduction One of the most common events in human cancer is hyperactivation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, generally described as a consequence of genetic alterations of pathway members. The core components of the pathway are depicted in Figure 1 A. There are four members of the class I PI3Ks, which act upstream of this pathway, performing the conversion of phosphatidylinositol-4,5-bisphosphate (PIP_(2)) into phosphatidylinositol-3,4,5-trisphosphate (PIP_(3)). This lipid produced in the inner leaflet of the plasma membrane controls a range of cellular actions including cell growth, migration, metabolism, survival and proliferation. Class I PI3K activity in vertebrates regulates both physiological and pathological processes ( 1 ). Figure 1 Heterogeneity of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) activation in cancer: global and comprehensive mapping by a multiscale integrated approach. (A) Representation of PI3K/AKT/mTOR canonic members. Most omics results use data obtained under treatment with pan-PI3K inhibitors which still display relative isoform specificity, or with PI3Kα-selective inhibitors associated with genetic alterations. Usually, only the expression of PIK3CA and PIK3CB is studied. Production of PIP_(3)at the plasma membrane is, however, performed by four enzymes: PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ. They are composed of a regulatory subunit (p85 or p101/p87) and a catalytic subunit (p110α, p110β, p110δ, or p110γ). (B) This schematic summarizes the bioinformatic meta-analysis performed in the study by Zhang et al. ( 2 ) using two PI3K/AKT/mTOR transcriptional signatures of Creighton et al. and Garnett et al. ( 3 , 4 ). (C) Representation of the molecular alterations found in cancer patients with high PI3K/AKT score. Molecular alterations in patients with reverse-phase protein array (RPPA) score values ≥0.5 are shown. These RPPA scores were normalized to SDs from the median across all cancers. Phosphatidylinositol-3-kinase activity has been implicated in a variety of different cancers, hence this class of enzymes is a prime drug target for anticancer therapies ( 5 ). However, initial phase I/II clinical trials of small molecule PI3K inhibitors show that the predictive markers of efficiency of these drugs need to be improved. The presence of PIK3CA mutation in the primary tumor alone is not a sufficient predictive marker of efficiency ( 6 , 7 ). Signal-targeted therapy would benefit from the identification of patients more likely to respond. A Recent Multiscale Omics Approach Mapped PI3K/AKT/mTOR Activation in Cancer Zhang et al. analyzed in an unbiased fashion both known molecular mechanisms by which the PI3K/AKT/mTOR pathway is upregulated in human cancers, as well as other possibly unrelated genetic alterations ( 2 ). They examined The Cancer Genome Atlas open access omics data (including genomic mutations by whole-genome sequencing, gene copy number by single-nucleotide polymorphism array, or RNA expression by whole-exome sequencing) across 11,219 human cancers representing 32 distinct major types. The authors also used reverse-phase protein array (RPPA) analysis to assess the level of expression of 166 total proteins and 56 phosphorylated proteins (Figure 1 B). Phosphoproteome-based PI3K/AKT and mTOR activity signatures (p-AKT_(S473/T308), p-GSK3_(S9), p-PRAS40_(T246), p-TSC2_(T1462)and p-mTOR_(S2448), p-RICTOR_(T1135), p-4EBP1_(S65/T34/T46/T70), p-S6K_(T389), p-S6_(S235/S236/S240/S244), respectively) by RPPA analysis were found to be correlated. Transcriptomics analysis found that the levels of expression of a selected list of members of the PI3K/AKT pathways were not correlated with the activation of PI3K or mTOR signaling nodes by RPPA. However, the authors confirmed a correlation between the transcriptional expression and alterations in the copy number of the so-called core genes. All mutated residues of members of the PI3K/AKT/mTOR pathway resulted in the expected increase in activity of the PI3K/AKT/mTOR pathway. Therefore, modifications to DNA, mRNA expression, and phosphoprotein levels were found to be functionally relevant in the hyperactivation of the PI3K pathway associated with cancers. Not all Cases of Increased PI3K/AKT/mTOR Pathway Activity Can be Explained by the Canonic Genetic Alterations Associated with PI3K Signaling In most scenarios, increased AKT activity can be explained by genetic or genomic alterations to members of the PI3K/AKT/mTOR pathway; however, this is not the case for all instances of AKT hyperactivation (Figure 1 C). In 764 of 7,099 tumors, including mostly lower grade glioma, pheochromocytoma and paraganglioma, prostate adenocarcinoma, and kidney renal clear cell carcinoma, the level of phospho-AKT was increased without any of the genetic or genomic alterations described as being functionally coupled to this pathway. In addition, upregulation of mTOR
机译:简介人类癌症中最常见的事件之一是磷脂酰肌醇3-激酶(PI3K)/ AKT /雷帕霉素(mTOR)信号转导的哺乳动物靶标的过度活化,通常被描述为通路成员遗传改变的结果。该途径的核心组成如图1 A所示。I类PI3K有四个成员,在该途径的上游起作用,将磷脂酰肌醇-4,5-双磷酸酯(PIP_(2))转化为磷脂酰肌醇- 3,4,5-三磷酸酯(PIP_(3))。在质膜内部小叶中产生的脂质控制一系列细胞作用,包括细胞生长,迁移,代谢,存活和增殖。脊椎动物中的I类PI3K活性调节生理和病理过程(1)。图1癌症中磷脂酰肌醇3-激酶(PI3K)/ AKT /哺乳动物雷帕霉素靶标(mTOR)活化的异质性:通过多尺度综合方法进行的全局和全面作图。 (A)PI3K / AKT / mTOR经典成员的代表。多数组学结果均使用仍显示相对同工型特异性的pan-PI3K抑制剂或与遗传改变相关的PI3Kα-选择性抑制剂治疗后获得的数据。通常,仅研究PIK3CA和PIK3CB的表达。然而,质膜上PIP_(3)的产生是由四种酶完成的:PI3Kα,PI3Kβ,PI3Kδ和PI3Kγ。它们由调节亚基(p85或p101 / p87)和催化亚基(p110α,p110β,p110δ或p110γ)组成。 (B)该示意图总结了Zhang等人在这项研究中进行的生物信息学荟萃分析。 (2)使用Creighton等人的两个PI3K / AKT / mTOR转录签名。和Garnett等。 (3,4)。 (C)代表在PI3K / AKT评分高的癌症患者中发现的分子改变。显示了反相蛋白质阵列(RPPA)评分值≥0.5的患者的分子变化。这些RPPA分数从所有癌症的中位数标准化为SD。磷脂酰肌醇-3-激酶活性与多种不同的癌症有关,因此这类酶是抗癌治疗的主要药物靶标(5)。但是,小分子PI3K抑制剂的I / II初期临床试验表明,这些药物功效的预测指标需要改进。仅原发性肿瘤中PIK3CA突变的存在不足以作为效率的充分预测指标(6,7)。以信号为目标的治疗将受益于确定更有可能做出反应的患者。最近的一种多尺度组学方法在癌症中映射了PI3K / AKT / mTOR激活。以无偏见的方式分析了PI3K / AKT / mTOR通路在人类癌症中上调的已知分子机制,以及其他可能无关的遗传改变(2)。他们检查了代表32种不同主要类型的11,219例人类癌症的《癌症基因组图谱》开放获取组学数据(包括全基因组测序的基因组突变,单核苷酸多态性阵列的基因拷贝数或全外显子测序的RNA表达)。作者还使用反相蛋白阵列(RPPA)分析来评估166种总蛋白和56种磷酸化蛋白的表达水平(图1 B)。基于磷酸化蛋白质组的PI3K / AKT和mTOR活动签名(p-AKT_(S473 / T308),p-GSK3_(S9),p-PRAS40_(T246),p-TSC2_(T1462)和p-mTOR_(S2448),p-通过RPPA分析发现RICTOR_(T1135),p-4EBP1_(S65 / T34 / T46 / T70),p-S6K_(T389),p-S6_(S235 / S236 / S240 / S244)分别是相关的。转录组学分析发现,PI3K / AKT途径成员的选定列表的表达水平与RPPA对PI3K或mTOR信号转导节点的激活无关。然而,作者证实了转录表达与所谓核心基因的拷贝数变化之间存在相关性。 PI3K / AKT / mTOR途径成员的所有突变残基均导致PI3K / AKT / mTOR途径的活性预期增加。因此,发现对DNA,mRNA表达和磷蛋白水平的修饰在与癌症相关的PI3K途径的过度活化中与功能相关。并非所有PI3K / AKT / mTOR途径活性增加的病例都可以通过与PI3K信号相关的经典遗传改变来解释。在大多数情况下,AKT活性增加可以通过PI3K / AKT / mTOR途径成员的遗传或基因组改变来解释。但是,并非所有AKT过度激活都存在这种情况(图1 C)。在7,099例肿瘤中的764例中,主要包括低度神经胶质瘤,嗜铬细胞瘤和副神经节瘤,前列腺腺癌和肾肾透明细胞癌,其磷酸化AKT的水平增加了,而没有任何基因或基因组改变被描述为与该途径功能相关。另外,mTOR的上调

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号