首页> 外文期刊>Frontiers in Neurology >Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications
【24h】

Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications

机译:磁共振波谱法评估急性人类颅脑损伤的代谢和损伤:当前和未来的应用

获取原文
           

摘要

Traumatic brain injury (TBI) triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with “spin,” e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin–spin interactions (J-coupling). The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA), creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP), is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites. 31P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr). ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH. 13C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%), 13C MRS is typically performed following administration of 13C-enriched substrates, which permits tracking of the metabolic fate of the infused 13C in the brain over time, and calculation of metabolic rates in a range of biochemical pathways, including glycolysis, the tricarboxylic acid cycle, and glutamate–glutamine cycling. The advent of new hyperpolarization techniques to transiently boost signal in 13C-enriched MRS in vivo studies shows promise in this field, and further developments are expected.
机译:颅脑外伤(TBI)触发了一系列复杂的病理生理过程。这些包括脑能量代谢异常;可能是由于缺血或组织氧扩散异常或线粒体功能衰竭引起的组织氧分压降低所致。体内磁共振波谱(MRS)可以对急性脑损伤患者的脑组织代谢进行无创询问。使用MRS可检测到带有“自旋”(例如1H,31P和13C)的核,并且在能量代谢各个阶段的代谢产物中都发现了它们,由于它们的化学位移或自旋-自旋相互作用(J耦合)而具有独特的特征。最常用的临床MRS技术1H MRS使用脑组织分子中大量的氢原子。回波时间较长的光谱包括N-乙酰天门冬氨酸(NAA),肌酸和胆碱。据报道,与TBI患者相比,NAA是与三磷酸腺苷(ATP)有关的神经元线粒体活性的标志物,其含量低于健康对照组,并且NAA /肌酸在早期时间点的比例可能与临床结果相关。以较短回波时间采集的1H MRS产生更复杂的光谱,从而可检测更广泛的代谢物。 31P MRS可检测高能磷酸盐种类,这些物质是细胞呼吸的最终产物:ATP和磷酸肌酸(PCr)。 ATP是活生物体中化学能的主要形式,PCr被视为在高利用率时期为其补充而随时动用的储备。人们认为高能磷酸盐的比例代表了大脑中能量产生,储备和使用之间的平衡。另外,无机磷酸盐和PCr之间的化学位移差异使得能够计算细胞内pH。 13C MRS可检测脑代谢物中碳的13C同位素。由于13 C的天然丰度低(1.1%),因此通常在施用富含13 C的底物后进行13 C MRS,这可以追踪随时间推移大脑中注入的13 C的代谢命运,并计算出13 C的代谢率各种生化途径,包括糖酵解,三羧酸循环和谷氨酸-谷氨酰胺循环。在富含13C的MRS体内研究中,用于瞬时增强信号的新超极化技术的出现表明了该领域的前景,并有望得到进一步的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号