...
首页> 外文期刊>Frontiers in Neurology >Editorial: Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives
【24h】

Editorial: Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives

机译:社论:促进运动恢复的运动启动:神经机制和临床观点

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Editorial on the Research Topic Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives The Oxford dictionary defines the term priming as “a substance that prepares something for use or action.” In this special issue, we define motor priming as a technique, experience, or activity targeting the motor cortex resulting in subsequent changes in motor behavior. Inadequate functional recovery after neural damage is a persisting burden for many, and this insufficiency highlights the need for new neurorehabilitation paradigms that facilitate the capacity of the brain to learn and recover. The concept of motor priming has gained importance in the last decade. Numerous motor priming paradigms have emerged to demonstrate success to improve functional recovery after injury. Some of the successful priming paradigms that have shown to alter motor behavior and are easily implementable in clinical practice include non-invasive brain stimulation, movement priming, motor imagery, and sensory priming. The full clinical impact of these priming paradigms has not yet been realized due to limited evidence regarding neural mechanisms, safety and effectiveness, dosage, individualization of parameters, identification of the appropriate therapies that need to be provided in combination with the priming technique, and the vital time window to maximize the effectiveness of priming. In this special issue, four manuscripts address critical questions that will enhance our understanding of motor priming paradigms and attempt to bridge the gap between neurophysiology and clinical implementation.In their study, “Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site,” Harris-Love and Harrington elegantly address the extremely important issue of individualizing brain stimulation for upper limb stroke recovery. Many brain stimulation techniques show high interindividual variability and low reliability as the “one-size-for-all” does not fit the vast heterogeneity in recovery observed in stroke survivors. In this article, the authors propose a novel framework that personalizes the application of non-invasive brain stimulation based on understanding of the structural anatomy, neural connectivity, and task attributes. They further provide experimental support for this idea with data from severely impaired stroke survivors that validate the proposed framework.The issue of heterogeneity poststroke is also addressed by Lefebvre and Liew in “Anatomical Parameters of tDCS to modulate the motor system after stroke: A review.” These authors discuss the variability in research using tDCS for the poststroke population. According to the authors, the most likely sources of variability include the heterogeneity of poststroke populations and the experimental paradigms. Individually based variability of results could be related to various factors including: (1) molecular factors such as baseline measures of GABA, levels of dopamine receptor activity, and propensity of brain-derived neurotropic factor expression; (2) time poststroke, (3) lesion location; (4) type of stroke; and (5) level of poststroke motor impairment. Variability related to experimental paradigms include the timing of the stimulation (pre- or post-training), the experimental task, and whether the protocol emphasizes motor performance (a temporary change in motor ability) or motor learning based (more permanent change in motor ability). Finally, the numerous possibilities of electrode placement, neural targets, and the different setups (monocephalic versus bi-hemispheric) add further complexity. For future work with the poststroke population, the authors suggest that tDCS experimental paradigms explore individualized neural targets determined by neuronavigation.In another exciting study in this issue, Estes et al. tackle the timely topic of spinal reflex excitability modulated by motor priming in individuals with spinal cord injury. The authors choose to test four non-pharmacological interventions: stretching, continuous passive motion, transcranial direct current stimulation, and transcutaneous spinal cord stimulation to reduce spasticity. Three out of four techniques were associated with reduction in spasticity immediately after treatment, to an extent comparable to pharmacological approaches. These priming approaches provide a low-cost and low-risk alternative to anti-spasticity medications.In another clinical study in individuals with spinal cord injury, Gomes-Osman et al. examined effects of two different approaches to priming. Participants were randomized to either peripheral nerve stimulation (PNS) plus functional task practice, PNS alone, or conventional exercise therapy. The findings were unexpected. There was no change in somatosensory function or power grip strength in any of the groups. Interestingly, all of the interventions produced changes in precision grip of the weaker hand following training
机译:研究主题的社论:用于运动恢复的运动启动:神经机制和临床观点牛津词典将启动一词定义为“为使用或作用做好准备的物质”。在本期特刊中,我们将运动启动定义为针对运动皮质的技术,经验或活动,从而导致运动行为的后续变化。神经损伤后功能恢复不足是许多人的持续负担,而这种不足还凸显了对新的神经康复范例的需求,这些范例可促进大脑学习和恢复的能力。在过去的十年中,马达启动的概念变得越来越重要。已经出现了许多运动启动范例,以证明成功地改善了损伤后的功能恢复。已经显示出可以改变运动行为并在临床实践中易于实现的一些成功的启动范例,包括无创性脑刺激,运动启动,运动成像和感觉启动。由于关于神经机制,安全性和有效性,剂量,参数的个体化,需要与启动技术结合使用的适当疗法的鉴定,证据有限,因此尚未意识到这些启动范例的全部临床效果。至关重要的时间窗口,可最大程度地发挥启动作用。在本期特刊中,有四篇手稿解决了关键问题,这些问题将加深我们对运动启动范例的理解,并试图弥合神经生理学与临床实施之间的鸿沟。在他们的研究中,“无创性脑刺激以增强上肢运动实践中风:A Harris-Love和Harrington优雅地提出了个性化大脑刺激以恢复上肢中风的极为重要的问题。许多大脑刺激技术显示出高个体差异性和低可靠性,因为“一刀切”不适应卒中幸存者在恢复中的巨大异质性。在本文中,作者提出了一种新颖的框架,该框架基于对结构解剖结构,神经连接性和任务属性的理解,可个性化非侵入性脑刺激的应用。他们使用严重受损的卒中幸存者的数据进一步验证了所提出的框架,从而为这一想法提供了实验支持。Lefebvre和Liew在“ tDCS的解剖学参数以调节卒中后的运动系统:回顾”中也解决了卒中后异质性的问题。 ”这些作者讨论了使用tDCS进行卒中后人群研究的可变性。这组作者说,变异的最可能来源包括中风后人群的异质性和实验范式。结果的个体差异可能与多种因素有关,这些因素包括:(1)分子因素,例如GABA的基线量度,多巴胺受体活性水平和脑源性神经营养因子表达的倾向性; (2)中风后时间,(3)病变部位; (4)中风类型; (5)中风后运动障碍水平。与实验范式相关的可变性包括刺激的时间(训练前或训练后),实验任务,以及实验方案是否强调运动能力(运动能力的暂时改变)还是基于运动学习(运动能力的更永久性改变) )。最后,电极放置,神经目标和不同设置(单头与双半球)的多种可能性增加了进一步的复杂性。对于未来的卒中人群研究,作者建议tDCS实验范式探索由神经导航确定的个性化神经靶标。解决由运动引发引起的脊髓损伤患者脊柱反射兴奋性的及时研究。作者选择测试四种非药物干预措施:拉伸,持续被动运动,经颅直流电刺激和经皮脊髓刺激以减少痉挛。四分之三的技术与治疗后立即的痉挛减少有关,其程度可与药理学方法相比。这些引发方法为抗痉挛药物提供了一种低成本,低风险的替代方法。在另一个针对脊髓损伤患者的临床研究中,Gomes-Osman等人。研究了两种不同引发方法的效果。参与者被随机分为周围神经刺激(PNS)加功能性任务练习,仅PNS或常规运动疗法。该发现是出乎意料的。在任何一组中,体感功能或动力握力均无变化。有趣的是,所有干预措施在训练后都会导致较弱的手的精确抓地力发生变化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号